A Bag of Tricks and Tips for DBAs and Developers

Author: Ari Kaplan

Independent Consultant

This presentation will give powerful “tricks” used by expert DBAs and developers to become more productive in their environments. There are dozens of little-known methods that are frequently asked for but not documented well, if at all. Several of the top methods used by the experts in various aspects of Oracle will be discussed. Included will be programs and knowledge that the attendee can take back to their installations.
There are many little-known facts and methods that most Oracle professionals frequently ask for to improve their environments. This presentation will focus on some unique tricks and tips for getting more out of Oracle for people who do not yet consider themselves experts. Several of the top methods used by the experts in various aspects of Oracle are discussed. Examples include dumping the contents of a table to an ASCII file in a tab-delimited format, getting around some limitations of the LONG datatype, using SQL to generate SQL, and many, many more topics. All scripts used in the discussion will be distributed for the attendees to bring back to their sites.

Introduction:

As most Oracle professionals know, the Oracle database and its related products are complicated. There are many little-known facts and methods that most Oracle professionals frequently ask for to improve their environments. Many of these are not documented, and those that are seem to be buried in reference-styled books that you would have to read straight through to learn anything new. I have been fielding questions from Oracle professionals around the world, and visit various Oracle discussion groups on the Internet daily, and have produced a list of tips that the Oracle community should know. This paper will provide some interesting tricks and tips that many Oracle professionals have been asking for.

The Topics:

Below is the list of topics that will be covered in this paper:

Dumping the contents of a table into an ASCII delimited file

Getting around LONG datatype limitations

Using SQL to dynamically generate SQL scripts

Dynamically recreate your init.ora file

Finding all referencing constraints to a particular table

Finding the total REAL size of data in a table, not just the INIT/NEXT extent

What SQL statement is a particular user account executing?

Temporarily changing user passwords to log in as them

Dumping the contents of a table into an ASCII delimited file:

Oracle has tools for importing and exporting data. Export is used to extract data from the database, and both the import and SQL*Loader utilities are used to put data into the database. However, Oracle export files are compatible only with Oracle databases. You cannot import and export to/from non-Oracle databases (Informix, Sybase, Access, Foxpro, Paradox, etc.)

You are able to use SQL*Loader to load data from a flat file, which may be generated by any non-Oracle database. Surprisingly, Oracle never provided a utility to dump the contents of a table into a flat file.

This section describes how to dump the contents of a table to a flat file, which may then be loaded into other databases, word processors, spreadsheets, etc. The general approach is to use SQL*Plus, spool to a file, concatenate all columns in the table, and stop spooling. It is important to concatenate columns so that each line of output will contain one record. Without concatenating, each record will take up more than one line, and will not be able to be easily loaded into other applications.

To concatenate two columns in SQL statement, you use the concatenation symbol: ||

For example, assume there is a table such as that below:

EMPLOYEES

NAME

AGE

DEPARTMENT

David Max

27

241

Ari Kaplan

28

242

Mickey Mouse

100

242

Dilbert

3

250

You can spool the table with one record per line with the following SQL:

SELECT NAME||AGE||DEPARTMENT FROM EMPLOYEES;

The result will be:

David Max27241

Ari Kaplan28242

Mickey Mouse100242

Dilbert3250

You can see that the format does not separate columns. Typical formats include tabs to separate columns. In Oracle, this is represented with a CHR(9). So, a better syntax would be the following SQL:

SELECT NAME||CHR(9)||AGE||CHR(9)||DEPARTMENT FROM EMPLOYEES;

The result will be:

David Max

27

241

Ari Kaplan

28

242

Mickey Mouse

100

242

Dilbert

3

250

For tables where the length each record is greater than 80, be sure to set the LINESIZE value large enough. Otherwise Oracle will break up the lines every 80 characters, making the file not easily readable by other applications.

Getting around LONG datatype limitations:

The LONG datatype for a column has big limitations within Oracle. If a table has LONG, you cannot do string manipulations such as LENGTH, SUBSTR, concatenations (||), and so on. Commands to alter the table structure become limited. Also, there are problems with the “CREATE table_a AS SELECT * FROM table_b” command. Snapshots and replication become complicated if not impossible.

Oracle8 has BLOB functions that can manipulate large datatypes, but Oracle8 is still limited with regards to the LONG column. For Oracle7, if you need any data larger than 2000 bytes, you are forced to use LONG.

There is a way that you can manipulate the LONG datatypes, and that is by using PL/SQL. The general idea is to define a variable as a LONG datatype, then do string manipulation on the variable. Below is an example of this:

Assume that there is a table:

RESUME_BANK

Name

VARCHAR2(40)

Department
NUMBER

Resume_text
LONG

Assume that you want to review all resumes with the word “ORACLE” in it. Normally, you would issue:

SELECT resume_text

FROM resume_bank

WHERE UPPER(resume_bank) like ‘%ORACLE%’;

What you would get is the ORA-932 “Inconsistent Datatypes”.

To find all such records with the LONG datatype in a table, you must use PL/SQL. Below is a sample program that will do this by selecting one resume from the resume bank:

SET SERVEROUTPUT ON SIZE 100000;

SET LONG 100000;

DECLARE

LONG_var
LONG;

resume_name
varchar2(40);

BEGIN

/* Get one record that contains ORACLE in the resume text. */

SELECT name, resume_text into resume_name, LONG_var

FROM RESUME_BANK

WHERE ROWNUM <2;

/* Print the resume to the screen */

DBMS_OUTPUT.PUT_LINE(‘Below is the resume of ‘||resume_name||

 ’ that contains the word ORACLE:’);

DBMS_OUTPUT.PUT_LINE(LONG_var);

END;

/

Using SQL to dynamically generate SQL scripts

Sometimes you may need to write a script with several repetitive statements. For example, you may want to write a script that will create a public synonym for all tables owned by a particular user account. This may run into the hundreds or thousands of SQL commands, making it impractical to write or maintain. To save time and remain flexible, you can control SQL so that it will dynamically generate more SQL scripts.

The approach that most people take is to use the concatenation symbol, as was used in the first example, in conjunction with the Oracle data dictionary, to create such scripts. An example that creates public synonyms for all objects in a schema follows:

The syntax to create a public synonym follows:

CREATE PUBLIC SYNONYM synonym_name FOR owner.table_name;

The following statement will create a series of “CREATE PUBLIC SYNONYM” statements:

SELECT ‘CREATE PUBLIC SYNONYM ‘|| object_name ||

‘ FOR ‘ || owner || ‘.’ || object_name || ‘;’

FROM ALL_OBJECTS
WHERE OWNER = ‘IOUG’;

This will produce an output similar to:

CREATE PUBLIC SYNONYM ATTENDEE FOR IOUG.ATTENDEE;

CREATE PUBLIC SYNONYM HOTEL_ID FOR IOUG.HOTEL_ID;

CREATE PUBLIC SYNONYM CREDIT_CARD_NBR FOR IOUG. CREDIT_CARD_NBR;

Notice how there is a space in the original SQL statement between the FOR and the preceding quote. Without it, the output would look like:

CREATE PUBLIC SYNONYM ATTENDEEFOR IOUG.ATTENDEE;

CREATE PUBLIC SYNONYM HOTEL_IDFOR IOUG.HOTEL_ID;

CREATE PUBLIC SYNONYM CREDIT_CARD_NBRFOR IOUG. CREDIT_CARD_NBR;

You can see how you must be careful of spaces and quotes. Also, take note of the final semicolon that is concatenated to finish the SQL for each line. To effectively use this method, spool to a file before the command, set the headings off, the feedback off, execute the SQL, and then spool off. A final note - if you expect your output to be more than 80 characters, be sure to specify “SET LINESIZE 120” - or some other length. Otherwise, extra line feeds will be inserted in the output, making the program unable to be run properly.

Putting it all together, the commands below will generate a clean file that contains only proper SQL statements:

SQL> SET HEAD OFF

SQL> SET FEEDBACK OFF
SQL> SET HEAD OFF

SQL> SPOOL X.SQL

SQL> SELECT ‘CREATE PUBLIC SYNONYM ‘|| object_name ||

‘ FOR ‘ || owner || ‘.’ || object_name || ‘;’

FROM ALL_OBJECTS
WHERE OWNER = ‘IOUG’;

CREATE PUBLIC SYNONYM ATTENDEE FOR IOUG.ATTENDEE;

CREATE PUBLIC SYNONYM HOTEL_ID FOR IOUG.HOTEL_ID;

CREATE PUBLIC SYNONYM CREDIT_CARD_NBR FOR IOUG. CREDIT_CARD_NBR;

SQL> SPOOL OFF

Dynamically recreate your init.ora file

Most Oracle professionals know that the initialization parameter (init.ora) file is used to define hundreds of configurable aspects of an Oracle instance. When the database starts up, it reads the file and instantiates the database according to its values. It is quite possible that a DBA is modifying the init.ora file and corrupts it (deleting a line) or forgets its original configuration. It is also possible that the init.ora file becomes unavailable due to a disk crash or otherwise. Below is a description of how to recreate the init.ora file dynamically from the database.

Within the database, the V$PARAMETER view is used to keep all information about configurable initialization parameters. The description of this view is shown below:

SQL> desc v$parameter

Name

Null?
Type
NUM

NUMBER
NAME

VARCHAR2(64)
TYPE

NUMBER
VALUE

VARCHAR2(512)
ISDEFAULT

VARCHAR2(9)
ISSES_MODIFIABLE
VARCHAR2(5)
ISSYS_MODIFIABLE
VARCHAR2(9)
ISMODIFIED

VARCHAR2(10)
ISADJUSTED

VARCHAR2(5)
DESCRIPTION

VARCHAR2(64)

The V$PARAMETER view is useful in not only recreating the init.ora file, but is a valuable source of information for a comprehensive list of available parameters, and a short description of what each of these parameters are used for. The meaning of the columns in the view is described below:

Num: Internal number

Name: Name of parameter

Type: classification of parameter (1,2,3,4)

ISSES_MODIFIABLE: TRUE, FALSE

ISSYS_MODIFIABLE: DEFERRED, FALSE, IMMEDIATE

ISMODIFIED, ISADJUSTED (is it modified for the system/session): TRUE. FALSE

DESCRIPTION: Oracle-supplied 1-line description

To see all of the parameters and their values (along with whether or not they are the default values), issue the following SQL:

SQL> COLUMN NAME FORMAT A30

SQL> COLUMN VALUE FORMAT A30

SQL> SELECT NAME, VALUE, ISDEFAULT
 FROM V$PARAMETER
 ORDER BY NAME;

Below is a sample portion of an output:

shared_pool_size

300000000
FALSE

snapshot_refresh_interval

60

TRUE

snapshot_refresh_keep_connections
FALSE

TRUE

snapshot_refresh_processes

0

TRUE

sort_area_retained_size

0

TRUE

sort_area_size

5120000

FALSE

sort_direct_writes

TRUE

FALSE

sort_read_fac

5

TRUE

sort_spacemap_size

512

TRUE

sort_write_buffer_size

32768

TRUE

sort_write_buffers

2

TRUE

spin_count

2000

TRUE

To generate the init.ora file, you can use SQL to generate SQL and spool the results to a file:

SQL> SET LINESIZE 200

SQL> SET TRIMSPOOL ON

SQL> SET HEADING OFF

SQL> SET FEEDBACK OFF

SQL> SET PAGESIZE 0

SQL> select name||'='||value

 2
from v$parameter

 3
where isdefault='FALSE'

 4
order by name

SQL> SPOOL initSID.ora

SQL> /

sequence_cache_entries=100

sequence_cache_hash_buckets=89

shared_pool_size=300000000

sort_area_size=5120000

sort_direct_writes=TRUE

…

SQL> SPOOL OFF

The file is created. All you need to do is remove the “SQL> SPOOL OFF” line at the end and the “SQL> /” line at the beginning and you have a workable init.ora file.

Finding all referencing constraints to a particular table

Constraints such as Primary Keys and Foreign Keys are used to establish relationships among tables, It is important to see the relationships among tables to learn more about a data model. It is especially important when one is altering or dropping a table because when you drop a table, all constraints that point to it may be dropped (depending on various CASCADE options). This section describes how to determine which constraints are pointing to a particular table.

The data dictionary view that shows table relationships is the DBA_CONSTRAINTS view. Its description is shown below:

SQL> desc dba_constraints

 Name

Null?

Type

OWNER

NOT NULL
VARCHAR2(30)

CONSTRAINT_NAME
NOT NULL
VARCHAR2(30)

CONSTRAINT_TYPE

VARCHAR2(1)

TABLE_NAME

NOT NULL
VARCHAR2(30)

SEARCH_CONDITION

LONG

R_OWNER

VARCHAR2(30)

R_CONSTRAINT_NAME

VARCHAR2(30)

DELETE_RULE

VARCHAR2(9)

STATUS

VARCHAR2(8)

DEFERRABLE

VARCHAR2(14)

DEFERRED

VARCHAR2(9)

VALIDATED

VARCHAR2(13)

GENERATED

VARCHAR2(14)

BAD

VARCHAR2(3)

LAST_CHANGE

DATE

The columns that are used to determine what constraint is being referenced are R_CONSTRAINT_OWNER and R_CONSTRAINT_NAME. For example, assume that there is a foreign key on the EMP table pointing to the primary key of the DEPT table. This foreign key ensures that the EMP.DEPT_NO column has a value that is contained in the DEPT.DEPT_NO column.

To see the constraints on the EMP and DEPT tables, along with which constraints they are referencing, enter the following SQL:

SQL> SELECT OWNER||’.’||TABLE_NAME “TABLE”,
2
CONSTRAINT_NAME, R_CONSTRAINT_NAME
3
FROM DBA_CONSTRAINTS
4
WHERE TABLE_NAME IN (‘EMP’,’DEPT’);

TABLE

CONSTRAINT_NAME
R_CONSTRAINT_NAME
SCOTT.EMP

FK_EMP

PK_DEPT
SCOTT.DEPT

PK_DEPT

You can see from the above results that the FK_DEPT foreign key constraint points to the PK_EMP primary key constraint. Now, to determine all constraints that point to a table, use the following SQL:

SQL> SELECT OWNER||’.’||TABLE_NAME “TABLE”,
2
CONSTRAINT_NAME, R_CONSTRAINT_NAME
3
FROM DBA_CONSTRAINTS A
4
WHERE (OWNER, R_CONSTRAINT_NAME) IN
5

(SELECT OWNER, CONSTRAINT_NAME
6

 FROM DBA_CONSTRAINTS B
7

 WHERE B.OWNER = ‘&owner’ AND
8

B.TABLE_NAME = ‘&table’);

Enter value for owner: SYSTEM

Enter value for table: DEPT

TABLE

CONSTRAINT_NAME
R_CONSTRAINT_NAME
SCOTT.EMP

FK_EMP

PK_DEPT
TRAINING.EMP

FK_EMP

PK_DEPT

Note that there was another table, owned by the TRAINING schema, that had a foreign key pointing to the DEPT table. The SQL also reveals the R_CONSTRAINT_NAME values (“referenced” constraint names). The way the SQL is designed, if there were more than one constraint on DEPT, all referencing constraints will also be included. So, tables with many constraints (even dozens) can all be accounted for with the above SQL.

Finding the total REAL size of data in a table, not just the INIT/NEXT extent:

When developers and database administrators create tables, they specify the INITIAL and NEXT extents. Oracle grabs the first extent and starts filling it with data. However, with the Oracle data dictionary views, you can only see the extent sizes. There is no data dictionary view to show how much space the actual data takes within the table. For example, the INITIAL extent of a table could be 100M, but there is only one 1K row in the table. This section will show you how to find out such information.

The crux of this solution lies in the ROWID pseudo-column. The ROWID keeps, among other information, what database block in which a record is stored. In Oracle7, ROWID is kept in restricted format, where the first eight characters determine the block number in which the record is kept. In Oracle8, the ROWID format has changed to extended format. To get the block information, you can convert the ROWID from extended to restricted formats, as shown later in this section.

In Oracle7, to find out the total blocks, enter the following SQL:

SELECT count(distinct(substr(rowid,1,8)))

FROM table_name;

In Oracle8, you can find the total blocks by entering the following SQL:

SELECT count(distinct(substr(dbms_rowid.rowid_to_restricted(rowid),1,8)))

FROM table_name;

You will get the total number of blocks that contain records of the table. To determine the overall size, find the block size. You can get this with the following SQL:

SELECT value

FROM V$PARAMETER

WHERE NAME = ‘db_block_size’;

The total space of the data is the multiplication of “Total Blocks” * “Block Size”. This will be in bytes.

What SQL statement is a particular user account executing?

One of the more important tasks you will face as a DBA is helping developers and users with SQL questions. It is very important to determine what SQL they are running. Unfortunately, Oracle does not make this intuitive or even easy. This section will step you through finding what SQL statement a particular user account is issuing.

First, you must determine the SID of the user account you wish to monitor. To get a list of all users logged in at any given time, type in the following SQL (you must be logged in as a DBA-privileged user account such as SYS or SYSTEM):

SELECT sid, schemaname, osuser, substr(machine, 1, 20) Machine

FROM v$session

ORDER BY schemaname;

A sample output follows:

SID
SCHEMANAME
OSUSER

MACHINE

1
SYS

2
SYS

3
SYS

4
SYS

7
SYSTEM

plat

ustate1

13
SYSTEM

oracle

ustate1

6
WWW_DBA
oracle

dw1-uw

14
WWW_DBA
oracle

dw1-uw

12
WWW_DBA
oracle

dw1-uw

Now, you can select a user from the above list. Run the SQL statement listed below. When you run it, the SQL that the user account is running will be shown.
SELECT sql_text

FROM v$sqlarea

WHERE (address, hash_value) IN

(SELECT sql_address, sql_hash_value

 FROM v$session

WHERE sid = &1);

When run, you will be prompted to enter a SID number. Note that this works best for longer transactions. If a user account is issues a statement and quickly commits, then “no rows selected” will be the result. Also, the SQL statement must still be in the shared pool area. If the shared pool is too small, some statements may get flushed out of memory.

Temporarily changing user passwords to log in as them:

In Oracle, user accounts with DBA privileges can do almost anything with the database. One thing they cannot do is determine what a user’s password is. This is because Oracle stores the password in a forward-encrypted password. For example, do the following SQL:

SELECT username, password

FROM DBA_USERS;

You will get a result of something like:

USERNAME

PASSWORD .
AKAPLAN

923FEA35C3BE5824

SYSTEM

34D93E8F22C21DA4

SYS

A943B39DF93E02C2

You cannot determine the password at all. This means that it is tricky to log in as another user, for whatever reason you would like to. There is a trick that you can use to temporarily change the user’s password to something you do know, and then change it back when you are done. The unsuspecting user will never know ;)

Before you do this, you need to find the encrypted password by typing the following SQL:

SELECT password

FROM all_users

WHERE username = ‘enter_username_here’;

Write down the 16-digit encrypted password. You will need this later. Now, change the password of the user to whatever you want, by entering a SQL like:

ALTER USER AKAPLAN IDENTIFIED BY applaud_now;

You can now go into the database as the AKAPLAN user:

sqlplus AKAPLAN/applaud_now

To change the password back, use the “BY VALUES” clause of the “ALTER USER” command. For the password, supply the 16-digit encrypted password in single quotes. An example is shown below:

ALTER USER AKAPLAN

IDENTIFIED BY VALUES ‘923FEA35C3BE5824’;

Summary:

This paper provided tips on various aspects of database administration and development. They will help Oracle professionals to be more productive in developing, monitoring, and administrating Oracle databases and application logic. There are many discussion groups on the internet for you to give questions and get answers. One of my favorites is “www.dejanews.com” If you liked the items discussed in the paper, I encourage you to visit my free Oracle Tips web page at http://homepage.interaccess.com/~akaplan. There are over 150 tips and answers to questions that have been posed to me over the years. This paper will be downloadable from the web page as well.

