All You Ever Wanted to Know About Indexes!

Ravi Sharma

Oracle Corporation

Abstract

If you have ever found yourself confused with questions like "To use or not to use this index?" or "How do I satisfactorily opti
mize my database making the best
 use of my indexes" or "What is an index, anyway?," this is the session to attend. The author attempts to present some very useful information for the novice Developer and DBAs,
keeping it simple and straight. Learn how to get maximum benefits from your indexes and how to manage them more effectively.

Introduction

This presentation is intended to serve as a quick reference for beginner level developers and DBAs. The discussion is focused around some of the more important
issues and considerations related to
 the use and management of indexes. The quick tips provided at the end should be very useful to plan your regular activities around the maintenance of indexes.

What are indexes?

Indexes are physically and logically independent (and theoretically optional !!) data structures that are created by
you
 and used by Oracle to make data access more efficient. The use of available indexes is implicit and users do not have to reference an index in
their SQL queries. Once created
, the indexes are maintained automatically by Oracle.

A typical CREATE INDEX statement looks as follows -

CREATE INDEX bom_part_idx ON bill_of_materials(part_no)

TABLESPACE bom_idx
01

STORAGE (INITIAL 10M NEXT 10M PCTINCREASE 50) PCTFRE
E
 0;

The above statement would create an index named bom_part_idx on the part_no column of the bill_of_materials table. This index will be placed in the bom_
idx
01 tablespace and the extents will be allocated as specified in the storage clause.

Index Structures in Oracle?

Oracle provides the B* Tree
and
Bitmap Index structures
 and other index sub-types
. The B* Tree structures are most common and serve most purposes. The Bitmap indexes are intended for low cardinality, high volume data values in very large tables. It is important
for
 you
to
choose the right index type according to the nature of your application.

The B* Tree Index

The most common type of indexes used in Oracle are the B* Tree indexes. A typical B* Tree looks like an inverted tree, with the top level blocks containing index data that points to lower level index blocks. The lowest level index blocks contain the actual data values and the corresponding ROWIDs to locate the rows in the
associated
table. The lowest level blocks are called leaf blocks and are simple doubly linked structures. The links are used to traverse through the tree and locate exact data values in a branch. The B* Tree structure always automatically stays balanced to make the access times to any row
in the index,
uniform.

The Bitmap Index

Bitmap indexes use a different internal representation. However, the functionality provided is the sa
me as a regular index. In a bit
map index, a bitmap is used for each key value instead of the ROWIDs
(
used in regular indexes
)
. These types of indexes use very little space and are part
icularly suited for
 low cardinality (few distinct data values such as region, gender, color etc.)
 data values
. Bitmap indexing can be very useful for
specific data values in a
DSS application
.

You can create a bit mapped index using
 the following syntax.

CREATE BITMAP INDEX region_bitmap_idx ON sales_log(region_cd);

Reverse Key Indexes.

In Reverse Key indexes the order of bytes of each indexed column (
but not
ROWID) is reversed. The order of indexed columns however, is not reversed. These types of indexes may be particularly useful for OLTP type of applications running in the Oracle Parallel Server environment. By reversing the byte order, lexically adjacent key are not stored together. This helps distribute, the otherwise concentrated, index data across leaf blocks
,
 thereby improving pe
rformance. The typical syntax
 for creating a reverse key index is as follows -

CREATE INDEX bom_idx1 ON bill_of_materials(partcd,partno,inv_cd) REVERSE;

To build a normal index from a reverse key index, you can issue the following command -

ALTER INDEX bom_idx1 REBUILD NOREVERSE;

Partitioned Indexes.

Partitioned indexes have been introduced with Oracle8 and are basically provided for organizing large indexes across several partitions for performance and availability reasons. Partitioned indexes can be used on both partitioned tables and non-partitioned tables. Partitioned indexes can be local or global. A local partitioned index has one index partition for each table partition. A global partitioned index’s organization is independent of the corresponding table partitions.

The Index Creation Process.

When you issue a create index statement, Oracle scans the relevant table and p
repares a sorted list of
 data values and the ROWIDs. Oracle uses the sort space in memory (defined by the init.ora parameter sort_area_size) to prepare this sorted list of ROWIDs and indexed
data values. If the underlying table is too large, it may be
come
 necessary
 for Oracle
 to complete the sorting in several runs. The temporary tablespace is used to swap out sorted data from the sort space
. The resultant
sorted
data sets are eventually merged to complete the operation. The index creation process can thus be tuned by carefully choosing the sort_area_size and setting the size and default storage parameters of temporary tablespace properly. (Usually your default extent size on the TEMP tablespace should not be smaller than the SORT_AREA_SIZE).

When to use indexes.

You should be selective in creating indexes. You should build indexes on large tables where a frequently run query on that table fetches less than 10 to 15% of the rows. If the volume of selected data is more, it may be more efficient for Oracle to
do a full table scan. You can
 run EXPLAIN PLAN and test run the query (with timing on) to evaluate performance in each case.

What to Index.

The member columns of an index is what defines the index. You should create indexes on the leading referenced columns in frequently run queries in your application.

The order of columns that appear in the index is very important. By choosing the right order, you may be able to make a particular index available to many other queries. For example, if many of the application queries look for employees based on the department number (deptno) and there are some queries that go by the deptno and mgr, it may be advantageous to build a single composite index on deptno and mgr. This index can be used by both the above queries.

When NOT to use indexes.

If possible, avoid building indexes on columns that are frequently updated. Remember, the presence of many indexes on a table decreases the performance of inserts, updates and deletes since for each row undergoing such an operation the corresponding index entries also need to be updated. Also, do not be tempted to build additional indexes just to satisfy ad-hoc (one time) queries. If you must do so, do not forget to drop such indexes after running the query. Unused and ineffective indexes can be detrimental to the performance of your database.

Indexing Plan.

You
should be very careful when deciding on an indexing scheme for your site. A detailed analysis of data and data access requirements is absolutely essential to come up with a good indexing plan. An index may appear to be the best solution for a particular query, but the same index might adversely affect the performance of the entire system.

Implicit Vs Explicit Indexes.

Oracle automatically creates indexes on unique and primary keys. For example, if you issue a constraint statement as follows, Oracle creates an implicit index named sales_log_pk in your schema.

ALTER TABLE sales_log ADD (CONSTRAINT sales_log_pk PRIMARY KEY (cust_id_nbr))

/

A
n

important point to realize here is that, by issuing the above statement, you are asking Oracle to create an index in your default tablespace using the default storage parameters for that tablespace. If you create all your primary and unique key constraints in this manner, you will have all of the corresponding indexes concentrated in your default tablespace. And if you have not been assigned a specific default tablespace, you will end up creating all these indexes in the SYSTEM tablespace!

It is therefore advisable to use a statement like the following to build your primary and unique key constraints. By doing so you have better control over where your indexes go and how they are organized.

ALTER TABLE sales_log ADD (CONSTRAINT sales_log_pk

PRIMARY KEY (cust_id_nbr)

USING INDEX

PCTFREE 10

TABLESPACE sales_index02

STORAGE (initial 8m next 8m minextents 1 pctincrease 0)

)

/

Indexing Considerations for OLTP and DSS Systems.

On-Line Transaction Processing Systems usually have lots of dynamic activity over live data. There can be many concurrent updates, inserts, deletes going on at one point in time. A sound indexing scheme is probably most crucial with OLTP systems.
You should avoid building too many indexes on an OLTP application.
In some situations Reverse Key indexes can greatly help
the performance of
OLTP applications.

DSS systems typically
 are read only systems for most part
.

Most
DSS
systems
will not have any insert or update activity during the day and have batch loads during the off peak hours. In such situations, you need to have more indexes during the query ac
tivity period and less
 indexes during the loads. A fine balance can be achieved by careful planning and analysis
 of your data
. Wherever practical, utilize bitmap indexes to increase performance of your DSS application.

A detailed discussion on OLTP Vs DSS systems is beyond the scope of this paper.
 However there are numerous issues to consider when planning
an i
ndexing s
cheme
for such systems.

Speeding Up Index Creation.

A typical index creation process can take
a
long time. Depending upon the nature of the exercise, you can do several things to improve this process. If possible allocate more SORT_AREA_SIZE and make a larger TEMPORARY tablespace available for a massive index building exercise. You can also use the UNRECOVERABLE option of the CREATE INDEX statement to speed up the index creation process for large indexes. Building an index with the UNRECOVERABLE option simply means that you will not be able to recover this index in case you have to perform database recovery (due to media failure etc.). This is because no redo logs are generated when the UNRECOVERABLE option is
 used
. However,
if you have the index creation scripts handy
,
index recover
y should not be a major concern
. You can always recreate your indexes, if you have the base tables available.

You can create an index with the UNRECOVERABLE clause as follows -

CREATE INDEX bom_idx1 ON bill_of_materials(partcd,partno,inv_cd) UNRECOVERABLE;

Index Splitting and Spawning.

As data is inserted, updated and deleted from the database, indexes continue to grow. As indexes continue to grow, splitting and spawning may occur within the index structure. Splitting is the process where a new node gets created at the same level as an existing node. As each level becomes full, the index may spawn and create a new level to accommodate new rows. You should ANALYZE your indexes periodically and look at the DBA_INDEXES
and INDEX_STATS
data dictionary view
s
 to determine the s
plitting and spawning that
may
have
 occurred in a particular index. The blevel column represents spawning and should never be greater than four even for very large indexes.

If an index has excessively grown, it may be a good candidate for immediate reorganization.

Index Reorganization.

When you delete a row from a table, the corresponding entry is removed from the index. However, Oracle can not
 readily
 reuse the space freed by the deleted entry for that index. Indexes, thus usually keep growing, for highly volatile tables, even if there is very little data in those table at a single point in time.

To free up this unused space, you should rebuild your indexes periodically. If there is a lot of update/delete activity on your database, this frequency may be higher than normal. You can simply drop and recreate an index (with appropriate storage parameters) to reorganize it. However, Oracle provides a better mechanism to reorganize indexes. You can rebuild an index from an existing index. The REBUILD
process
is usually much faster than a complete fresh create, since Oracle uses the sorted data in the existing index to create the new one. A dynamic SQL script is provided in the appendix of this paper for you to use and build a index reorganization script for a desired schema.

You can rebuild an index using the following statement -

ALTER INDEX <index-name> REBUILD;

However, if you do not specify the tablespace name and storage clause in the above statement, Oracle will rebuild and move the index from the current tablespace to the default tablespace for the user and build it with the default storage parameters for that tablespace. You should rather use the following syntax to ensure your index does not go to an unwanted tablespace.

ALETR INDEX <index-name> REBUILD

STORAGE(initial <value> next <value> pctincrease <value>)

TABLESPACE useridx;

init.ora parameters that affect indexes.

The following init.ora parameters directly or indirectly affect the creation, use and maintenance of indexes.

SORT_AREA_SIZE - When building and index, Oracle uses the sort area to sort data in a table. If this parameter is set too low, Oracle will have to sort the entire data in smaller chunks, swapping each sorted data set to the temporary segments and then merging all
sorted
data later. This can considerably slow down the entire index creation process.

OPTIMIZER_MODE - This is a single most important parameter that can have very significant effect on the use of indexes in your application. If you use the Cost Based Optimizer, Oracle’s decision to use or not use an index is solely based on the statistics available to the optimizer, rather than the availability of that index. Make sure you analyze your objects/schema regularly to help the optimizer make the right decision for the execution paths for your SQL statements.

CREATE_BITMAP_AREA_SIZE - Bytes used to create bitmapped indexes. For large bitmapped indexes, increase this parameter.

BITMAP_MERGE_AREA_SIZE - Space used for merging bit mapped indexes. For a database with several bit mapped indexes, increase this value to a few mega bytes.

Data dictionary views that contain index information.

The following data dictionary views can help you find more information about your indexes.

DBA_SEGMENTS - Information about index segments, storage, tablespace, extents etc.

DBA_INDEXES - Information about index_name, base table_name, storage parameters for the index, index organization information and status of the index etc.

DBA_IND_COLUMNS - Information about index ownership, indexed columns and the order of the columns in specific indexes.

INDEX_STATS - Low level index organization information. Useful when you nee
d
 to analyze the structure of the index.

INDEX_HISTOGRAM - Information about repeat_count and keys_with_repeat_count.

DBA_CONSTRAINTS - Information about different type of constraints, referenced constraints and status. Look for constraint type P or U to identify primary/unique key indexes.

DBA_CONS_COLUMNS - Basic information about constraints on tables.

Database Recovery - Special Consideration for Indexes.

Always organize your data such that you assign different tablespaces for data and indexes. In many cases of database media failure (when the affected datafile(s) belongs to an index tablespace), database recovery can be speeded up by a significant factor, by just dropping the index tablespace and rebuilding your indexes. Keep in mind, you must have the index creation scripts for your database always updated and handy.

Summary - Quick Tips

Keep indexes and data in separate tablespaces.

Build indexes after loading data.

Keep index cre
ation scripts uptodate and readily available
.

Rebuild your indexes periodically.

Build your primary and Unique key constraints with the “… using index ” clause.

Take your time to plan and do impact analysis. NEVER create/drop indexes on the fly.

Create large indexes with the UNRECOVERABLE option to speed up the process.

Conclusion

In order to successfully manage your database, you must have a well defined index management process in place. Using good judgment when planning for and creating indexes, maintaining the indexes over a period of time and dropping unuseful indexes, lets you keep your database well organized and helps in reducing performance problems (and downtime !).

Acknowledgments

This paper is a direct result of the encouragement, motivation and support of Ro
b
ert K Pendley, Manager, US West
 and James McDonald, Practice Manager, Oracle Consulting Services, Salt Lake City, UT. Also a very special thanks to my wife for granting me two free evenings in front of the computer.

About the Author

Ravi Sharma is Principal Consultant
 with Oracle Corporation
. He is based in Salt Lake City and can be reached at rsharmax@yahoo.com for your comments and feedback. With about seven years of experience, Ravi has been an Oracle Developer, Unix System Administrator and Oracle DBA. He has made presentation at Local and International Oracle Groups in the past.

Note

Please note the author can not guarantee the validity of information provided in this paper.

Appendix

Dynamic SQL script for Index Organization.

rem BUILD_INDEX_REORG_SCRIPT.sql

rem This script builds a sql script to rebuild the indexes in a specified schema.

set pagesize 10000

spool rebuild_indexes.sql

set head off

set feedback off

set echo off

select 'alter index '|| segment_name ||' rebuild tablespace '||

tablespace_name || ' storage (initial ' || initial_extent || ' next ' ||

next_extent || ');'

from dba_segments

where segment_type = 'INDEX'

and owner = '<schema name>'

and extents > < specify a number >

order by tablespace_name,extents asc

/

spool off

Paper #??? / Page � PAGE �
6
�

Paper #??? / Page � PAGE �
7
�

