Database Access Techniques for Java

Derek C. Ashmore

Delta Vortex Technologies, Inc.

This paper will begin with an architecture review for Java applets and applications which connect to Oracle databases. As many of you know, applets are Java applications which are deploy via a browser over the internet (or increasingly corporate intranet).

This paper will then provide an overview of Oracle database access via JDBC class libraries. JDBC (which stands for Java DataBase Connectivity) is similar to ODBC in that it attempts to homogenize database access for Java across database platforms. We will discuss how to use JDBC class libraries effectively with Oracle databases along with some of the Oracle extensions to the JDBC class libraries.

This paper will then provide an overview of Java capabilities new to version 8.I of Oracle. As of Oracle V8.I, stored procedures, functions, packages, and triggers can be written in Java (using JDBC) instead of PL/SQL. We will discuss ways to deploy these types of stored objects as well as some of the utilities to manage them.

Java Application Architecture Review

Java can be deployed either as a Client/Server type application or an applet. Applets have become popular these days due to the large amount of hype given to the internet. Increasingly, systems are being deployed as applets to reduce typical client deployment costs incurred with traditional client server applications.

Java programs can access oracle databases using either “Thick” or “Thin” database drivers. In reality, the “thin” driver incorporates as much code as the “Thick” driver. The “thin” driver gets its name from not requiring anything more than an operating system with a properly configured TCP stack.

Increasingly, Java applications/applets are being deployed with CORBA, COM/DCOM or with the aid of RMI. All of these options provide ways for Client objects to invoke objects on a separate machine, typically referred to as an application server. For the purposes of database access, CORBA and RMI systems typically are organized such that only server-side objects access the database with JDBC.

Deployment Options

Applets are identical to applications except that they have some specific security restrictions. Some of these restrictions include restricted network connection capabilities as well as severely restricted use of Client machine hardware. For instance, applets can only communicate with the server that deployed them. That is, the database server must be on the same machine that the application server is. Furthermore, applets can’t use client resources, such as printers or local files. If applet security restrictions were not in place, you would be essentially be vulnerable to viruses deployed via applets over the internet.

The most important advantage that applets have is that only require that the client has installed a browser, such as Internet Explorer or Netscape Navigator. Compared with most client/server technologies, this significantly reduces maintenance costs associated with deployment.

Applications require a locally installed Java Virtual Machine (JVM). Additionally, if the client uses the “thick” oracle database drivers, a net8 installation would also be required on the client machine. However, applications do not have the same security restrictions that applets do.
Connection Options

Oracle’s “thick” client driver requires a net8 install. It uses the Oracle Call Interface (OCI) to achieve database access. Hence, it has access to the sophisticated net8 connection options, such as encryption, should you choose to use them. The “thin” client requires only an operating system with a TCP stack. The thin client will actually specify the server name, instance name, and port in the connection string.

I prefer to use the thin client if I don’t need the advanced features provided by the thick client. I haven’t noticed any significant performance differences. It allows me to migrate an application to an applet and vice versa. Most of my projects over the past several years have a significant portion of the budget devoted to client set-up and ongoing administration. Thin clients allow me to significantly reduce these costs.

CORBA Object Request Brokers (ORB) provide remote instantiation of an object. That is, the ORB allows a Java class on a client machine to instantiate a class on a separate machine and communicate with it via its methods. The ORB makes the fact that a method call in fact traverses machines transparent.

CORBA directly has nothing to do with database connectivity. Indirectly however, CORBA facilitate database connectivity by allowing client-side objects to communicate with server-side objects that assume responsibility for performing database access. That is, server-side objects can be written to handle database access on behalf of a client object(s) that instantiated it. We discuss ORBs within the context of this paper as it can be an integral part of deploying Java applets/applications, including those that access Oracle databases.

CORBA implementations require an installed and configured ORB. ORB implementations generally provide load balancing capabilities and connection pooling capabilities as well. At the time of this writing, Inprise and IONA are vendors of the two most popular ORBs.

Remote Method Invocation (RMI) and Microsoft's COM/DCOM services achieve database connectivity the same way the ORBs do. RMI is available through the normal Java class libraries. However, RMI is generally a more resource intensive invocation with less flexibility. Furthermore, RMI does not include any load balancing or connection pooling features. COM/DCOM services are fairly robust, but do require NT to be the operating system of the application server.

The Advantages of using Java

The chief advantage to using Java is its platform independence. Many times have I move my class libraries from my NT laptop to an AIX or Solaris server to find that they work just as well on UNIX as NT. I have observed some idiosyncrasies when switching versions of the Java Virtual Machine (JVM). Switching versions of the JVM require the same levels of backtesting that we should give to switching versions of an Oracle database.

To a lessor extent, Java’s garbage collection services and enforcement of object orientation can be considered advantages as well. The garbage collection services free memory that’s no longer being used. This prevents memory leaks that frequently happen in other languages. The fact that object orientated paradigms are moderately enforced is either a benefit or a curse depending upon your object design capabilities.

JDBC Overview

JDBC is very similar in concept to ODBC. It is an attempt to homogenize database access between platforms. That is, it tries to make Oracle database access look identical to Sybase database access, etc. JDBC does not achieve its homogenization goal. Nonetheless, it is the most common way to access Oracle databases within Java.

Import libraries in Java are like header files in C/C++. They define all JDBC and Oracle class structures necessary to achieve Oracle database access. We’ll go though them. Additionally, we will review the JDBC class constructs and provide examples of how to use them. We will also provide examples of how to execute select, update, insert, and delete statements using JDBC within Java. We will also discuss some tuning tips for making oracle database access faster.

JDBC Import Libraries

An example taken from Java program code follows:

import java.lang.*;

import java.sql.*;

import oracle.jdbc.driver.*;

import oracle.sql.*;

Java.sql provides native Java JDBC class libraries. Oracle.jdbc.driver defines class libraries for both thick and thin drivers. Oracle.sql provide several useful oracle extensions to native JDBC class libraries found in java.sql. We need to import both java.sql and oracle.sql because many oracle.sql classes directly extend JDBC classes in java.sql. Additionally, oracle.sql has many useful classes to deal with specific oracle data types and constructs such as LOBs, nested tables, VARRAYs, etc.

Class structures that support Oracle database access are provided by java.sql and oracle.sql. They represent objects that need to be declared and instantiated to access oracle databases. The objects provided by these class libraries include the following objects: DriverManager, Connection, Statement, PreparedStatement, Resultset, and SQLException.

JDBC Driver Specification

A Driver object represents a database driver. One of these will be registered for each type of database you access within your Java program. The oracle driver can be registered by inserting the following statement at the head of your program:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

The DriverManager is defined within Java.sql. The argument to merely specifies that we’re using an Oracle driver. Separate drivers are available for other databases. Methods to DriverManager allow us to obtain a database connection or terminate a specific database driver if we no longer need it.

JDBC Database Connection Specification

A Connection object represents a database connection. A driver must be registered before a connection object can be instantiated. You can have multiple connections per driver. A Connection object is generated from the DriverManager using a statement similar to the following:

Connection DBConnect = DriverManager.getConnection(“jdbc.oracle.oci8:@MYDB”,”derek”,”pwd666”);

The first argument specifies the database connection string as well as if the “thin” or “thick” driver will be used. The second and third arguments represent the userid and password respectively. You can have multiple connections per driver and connections to multiple database. JDBC does not have any native two-phase commit capability. We will have to commit and rollback individually on each connection.

Additionally, the connection object has methods which can initialize a statement and optionally have commits issued implicitly after each statement. The example below presents a “thick” client Oracle database connection.

Connection DBConnect = DriverManager.getConnection(“jdbc.oracle.oci8:@MYDB”,”derek”,”pwd666”);

Additionally, the tnsnames reverence MYDB in the example above could have been replaced with connection information in tnsnames format in stream as illustrated below:

Connection DBConnect = DriverManager.getConnection(“jdbc.oracle.oci8:@(description=(address=(host=dbserver) (protocol=tcp)(port=1521) (connect_data=(sid=DBSID)))

The example below is a “thin” driver example. Notice that the connection string contains the word “thin” and includes the server name, port, and database SID name. In other words, a “Thin” style connect looks like the old Sqlnet V1-style connection strings. In reality, there is a subset of net8 implemented in the oracle import libraries.

Connection DBConnect = DriverManager.getConnection(“jdbc.oracle.thin:@dbserver:1521:DBSID”,”derek”,”pwd666”);

Normally, it is not a good idea to hardcode the connection string within a Java program. It is far wiser to pass it as a variable which is determined outside the Java program. Examples of how to do this include reading it from an initialization file or registry entry or passing it as a command line argument to the class via a method.

The example below illustrates this point. Note that the literals are substituted with a String type objects:

Connection DBConnect = DriverManager.getConnection(ConnectString,UserIdString, PasswordString);

JDBC Statement Specification

Statement objects represent a SQL statement, such as select, update, insert, delete, etc. DDL can be executed through statement objects as well. The statement object represents a non-parsed version of the SQL statement. That is, access path has not been determined and this statement is not yet in the database shared pool.

Both executeQuery and executeUpdate take a string as an argument that specifies the SQL statement without any host variables. Both methods initiate a ResultSet object underneath. Both methods initiate a parse of the statement before execution. We will see another way to accomplish the execution of a SQL statement when we discuss the Resultset object.

The getResultSet methods returns a resultset object with data obtained from a select statement.. It isn’t used with other types of statements. No arguments are needed for the getStatement method of a connection object. The SQL statement is provided to the Statement or PreparedStatement object directly. The example below illustrates a statement declaration:

Statement DBStatement = DBConnect.getStatement();

JDBC Prepared Statement Specification

A PreparedStatement object represents a prepared version of a SQL statement. The prepareStatement method prepares, but does not execute, the SQL Statement. It is used commonly when the same statement will be issued multiple times with possibly changing host variable values. This is provided for performance reasons. Effective use of PreparedStatement objects can make more efficient use of the shared pool and not dedicate as much database resources to parsing activity.

Like the Statement object, the PreparedStatement object provides a executeQuery and executeUpdate method. Additionally, it provides set methods to set the values of host variables so that parsed statements can be reused. Host variables are notated in the SQL Statement by a question mark. All host variables must be provided a value before statement execution.

Host variables are provided a value by the various “set” methods provided by the PreparedStatement object. The first argument to each set method is that index to the host variable value being set. That index is sequential. For example, the first host variable appearing in the SQL statement is index “1”, the second is “2”, etc. The executeQuery and executeUpdate methods are only valid after the host variables have been populated.

The example below is a select statement that retrieves name and salary information from an employee table. Note that the social security number of the person to be queried is provided as a host variable. The setInt method of the PreparedStatement object used to provide a value for the host variable before the result set is obtained.

PreparedStatement DBPrepStmt = DBConnect.prepareStatement(“select emp_name, emp_salary from employee where ss_nbr = ?”)

...

DBPrepStmt.setInt(1,555667777);

ResultSet DBResultSet = DBPrepStmt.executeQuery();

JDBC ResultSet Specification

A ResultSet object represents the data retrieved from a select statement. The ResultSet object has various get methods to allow us to retrieve the values for individual columns. At the time of this writing, query results are scroll-forward only. However, in the next release of JDBC, you will be able to scroll in either direction.

Columns within each row are most commonly referenced by offset, although they can be referenced by name as well. That is, the first column in the select list is offset 1, the second column is two, etc. The findColumn method will return an index to a named column in the result set. For instance, if EmpName is the second column in the result set and we issue the following statement, we will be returned a value for the findcolumn method of “2”. The following example illustrates use of the findcolumn method:

ResultIdx = DBResultSet.findColumn(“EMPNAME”);

EmpName = DBResultSet.getString(ResultIdx);

The next method will retrieve the next row in the result set. It returns a null value at the end of the result set. The following example illustrates the processing of multiple rows. The next() method will return a false at the end of the result set which will break us out of the while loop. In this example, columns are referenced by offset. Incidentally, this example illustrates why we should never code a “select *” in an application. If an administrator changes the order of the columns in the table or view providing the data, this code will not work.

while (DBResultSet.next()) {

 HostEmpName = DBResultSet.getString(1);

 HostEmpSalary = DBResultSet.getFloat(2);

}

Note that the first column, employee name, is a string. Hence, we use the method getString obtain its value for the current row. Likewise, we use getFloat to obtain a value for the salary of the current row. When the result set processing has been completed, the next() method will return a null, or “false” value and allow processing to fall out of the while loop.

JDBC Error Processing

SQL Errors in other languages (e.g. C, COBOL) are commonly detected by checking a return code after each call. In Java, it is common to recognize errors as “exceptions”. We trap exceptions in Java by using the try/catch syntax.

Exception Objects, like any other type of object, has methods associated with it. SQLExceptions have two very commonly used methods: getMessage and printStackTrace. getMessage returns a string containing a textual message from the database engine, in this case Oracle. printStackTrace will print any additional text received from the database engine or the JVM to standard output or to any printstream provided.

This example attempts to run a parsed query. If a SQL Error is generated, the exception is trapped and all messages printed to standard output.

try {

 ResultSet DBResultSet = DBStatement.executeQuery();

}

catch (SQLException SQLError) {

 System.out.println(SQLError.getMessage());

 SQLError.printStackTrace();

}

JDBC Tuning Tips

The techniques we use to tune and effectively write SQL embedded in other languages apply to embedded SQL within Java as well. One tuning mechanism we use in any programming language, not just Java, is array processing. Array processing allows us to manipulate data in batches. Typical batch sizes (typically referred to as the prefetch size) are 10 and 100. This has the effect of reducing the number of network transmissions which increases processing speed. There are some idiosyncrasies with how array processing is accomplished using JDBC.

Array processing in Java is specified by slightly altering the Connection. If we cast a Connection object as a “OracleConnection” object, we can set the prefetch size, which is essentially the array size used for the fetch. There are no other coding differences. We should also note that if you declared the connection object as an OracleConnection to begin with, there would be no need to cast it as another object before setting the prefetch size. The following example of setting the prefetch size assumes that we need to cast the connection as an OracleConnection:

((OracleConnection)DBConnect).setDefaultRowPrefetch(100);

The following example assumes that we defined the connection as an OracleConnection to begin with:

OracleConnection DBConnect = DBDriver.getConnection(“jdbc.oracle.thin:@dbserver:1521:DBSID”,”derek”,”pwd666”);

DBConnect.setDefaultRowPrefetch(100);

In other languages (e.g. C, COBOL) we have to manage elements in the array programmatically. We have to track when a new fetch should be issued and when it should not. We have to manage the indexes to elements of the array. In Java, the Oracle JDBC drivers do this all for us.

Additionally, we can batch update, insert, delete statements without custom coding an anonymous PL/SQL block. This is a modification to the PreparedStatement object where we set the execution batch size. The following example illustrates setting the batch size. Note that if the prepared statement object DBPrepStmt was declared originally as a OraclePreparedStatement, casting DBPrepStmt as illustrated would not be necessary.

((OraclePreparedStatement)DBPrepStmt).setExecuteBatch(10);

((OraclePreparedStatement)DBPrepStmt).sendBatch();

As we do in other languages, please take the trouble to use host variables for literals in the where clause. Many people don’t as you have to add additional code to deal with the PreparedStatement object, but the performance boost is usually worth the pain. The consequences if you don’t use host variables is a high parse rate and inefficient use of the shared pool by the database engine.

Host variables are marked in a SQL statement with a “?”. After a statement is prepared, but before it is executed, we use the various “set” methods within the PreparedStatement object to provide values to host variables before the executeQuery or executeUpdate methods are called.

OraclePreparedStatement DBPrepStmt = DBConnect.prepareStatement(“select emp_name, emp_salary from employee where ss_nbr = ?”)

...

DBPrepStmt.setInt(1,555667777);

ResultSet DBResultSet = DBPrepStmt.executeQuery();

Java on Oracle V8.I

Starting with Oracle V8.I, stored procedures, functions, packages, and triggers can be written in Java. In previous versions, they had to be written in PL/SQL. We will describe how to write stored object in Java, cover a couple of new utilities to manage Java objects.

JVM/8.I Basics

The two step process to define Java stored objects is (1) load the Java class and (2) expose its methods. Java classes are loaded into the database by either a CREATE JAVA statement or via the loadjava utility. In reality, the loadjava utility issues a CREATE JAVA statement under the scenes. I find the loadjava utility easier to use.

Java classes can be loaded as source, class, or jar files. Java source is compiled by the Java Virtual Machine (JVM) in the Oracle database engine. The ability to load class and jar files is nice because we can conceivably load purchased components into the database. An example of a loadjava statement follows:

loadjava -v -f -u derek/pwd666@venus:1521:MYDB /usr/home/dashmore/java/source/TableManager.java

The –v option produces detailed messages about the steps loadjava is going through to compile and load my java class. The –f forces the loading of this java class, even though it is already present. This means that I don’t have to issue a dropjava command first. The –u option specifies the connection string in thin driver format for the database in which this class is being loaded. The last argument specifies my java source.

Similarly, I can remove my class with the dropjava utility. The command arguments are similar. The –v and –u options mean the same thing as with the loadjava utility. Note that I can drop the source and the compiled class versions separately and in any order. An example follows:

dropjava -v -u derek/pwd666@venus:1521:MYDB TableManager.java

dropjava -v -u derek/pwd666@venus:1521:MYDB TableManager.class

Once the classes have been loaded, we must expose individual methods with CREATE PROCEDURE, FUNCTION, PACKAGE BODY statements. It should be noted that the Java language libraries, JDBC libraries, and ORB class libraries are already present in the database. No need to load them again.

The import libraries are loaded in the database as platform-specific compiled code. Most Java, and the Java you write and load into Oracle, is actually interpreted. That is, class and jar files, while they are binary, are platform independent files that must be interpreted at tun-time. The import libraries are truly compiled into machine-readable code which makes them significantly faster.

The JVM stays resident with the instance. This means that Java stored objects don’t have the overhead of invoking the JVM before execution. For database administrators, the only new init parameter for the JVM is the JAVA_POOL_SIZE. This parameter specifies the amount of memory allocated to the JVM. In terms of environment settings, the CLASS_PATH must be properly set for the ID starting up the database for Java stored objects to work.

Unlike PL/SQL, which automatically assumes definer’s security rights when executed, we have our choice with Java stored objects. Also unlike PL/SQL, Java stored objects are not schema specific. In PL/SQL, different users can have stored procedures that are named the same, but in fact represent different code. Java stored object names must be unique to the database. The JVM resident in the database does not have the ability to differentiate between Oracle schemas.

Java Method Registration

While the loadjava utility will associate Java classes with the database, none of the methods associated with those classes are callable until you register them. Methods of Java classes are registered by issuing CREATE PROCEDURE, FUNCTION, or PACKAGE BODY statements. After registration, they can be called in the same manner that procedures, functions, and packages are called.

Arguments to Java stored procedures can only be input arguments. Java must return information only with the RETURN statement. If Java objects need to return more than one item of data, you need to break that method up into separate methods.

An example of a CREATE FUNCTION statement that registers a Java method is presented below:

CREATE FUNCTION NbrRows(TableName VARCHAR2) RETURN NUMBER

AS LANGUAGE JAVA

NAME ‘TableMgr.NbrRows(java.lang.String) return int’;

The PACKAGE declaration, which is not shown here, is identical to what we would see for a PL/SQL package. We associate a Java method with a function within a package in the CREATE PACKAGE BODY statement. Note that its declaration within the package body is very similar to its declaration as an independent function. An example of a package declaration for a java stored procedure follows:

CREATE or REPLACE PACKAGE BODY TableMgr IS

…

FUNCTION NbrRows(TableName VARCHAR2) RETURN NUMBER

AS LANGUAGE JAVA

NAME ‘TableMgr.NbrRows(java.lang.String) return int’;

…

The syntax AS LANGUAGE JAVA along with a complete specification of the Class, method and any associated arguments.

Notice that you must fully qualify the argument passed if it isn’t a native Java data type. As many of you know, Strings are not a native data type in the Java language. The definition of a String is obtained from the Java.lang import library. Hence, we must fully qualify the object type being passed.

There are surprisingly few alterations we must make to a Java program to define it as a stored object under V8.I. All Java stored objects use JDBC for database access. That means that all of the JDBC objects, methods, and examples given previously will work within a Java stored object.

The only difference is that within a Java stored object, we will typically specify the default connection, the connection used by the process that invoked the stored procedure, as opposed to opening up a separate connection. An example of how you specify the default connection is as follows:

Connection DBConnect = new OracleDriver().defaultConnection();

Note that there is nothing prohibiting us from establishing a separate connection, but usually there is no advantage in doing so. Also note that even though the Java code may be using the invoker’s database connection, it may be operating under the security privileges of its definer. Remember that we can use the loadjava utility to do this.

Usage Tips

Rely on the standard import libraries as much as possible. Remember that the standard import libraries have been run the NCOMP translator. This means that they exist in a platform-specific machine-readable for within the kernel JVM. Hence, the standard libraries can do things much faster than your code can, no matter how efficiently you write it. Oracle estimates that the standard libraries run about 10 times faster on a per instruction basis than code you write and submit.

Try to specify array processing for selects as much as possible. Keep in mind that there are diminishing returns on increasing the array size. That is, increasing the array size from 1 to 10 will provide more improvement than increasing the array size from 10 to 100. My testing indicates that in most situations, specifying an array size over 100 doesn’t provide much benefit.

JDBC Extensions

SQLJ is a preprocessor that is meant to simplify SQL coding within Java programs. It operates in much the same way that the Oracle precompilers (e.g. ProC, ProCOBOL, etc.) and the DB2 COBOL precompiler works. SQLJ will comment out your embedded SQL statements and replace it with native JDBC code. My personal opinion is that it doesn’t provide as much benefit as the precompilers. That is, it doesn’t simplify coding as much as I would like it to. Most developers that I’m associated with don’t bother with it.

There are several data aware component libraries which provide simpler ways to utilize database access within Java. For example, Inprise provides a JBCL class set that blends JDBC objects with Swing objects to shorten the development time to manipulate database data visually. SQLJ, just to provide some more detail, allows you to insert SQL statements directly within your Java code without dealing with the JDBC libraries.

Essentially, all SQL statements are prefaced by #sql and end with Java’s normal end of statement delimiter (“;”). SQLJ comments these embedded SQL statements out replacing it with JDBC code similar to what was discussed in this presentation. Like other types of precompilers, SQLJ places some additional coding requirements to declare and define host variables.

Book References

Core Java, second edition. Cornell and Horstmann (SunSoft Press)

Advanced Java, Development for Enterprise Applications. Berg (SunSoft Press)

8i JDBC Developer’s Guide (Oracle Doc)

8i Java Stored Procedures Guide (Oracle Doc)

Paper #409 / Page 4
Paper #409 / Page 3

