Database Statistics and the Care and Feeding of Your Database

Jeff Nielsen

PLATINUM technology International, inc.

Opening

This paper will focus on the concept of database statistics in Oracle: what they are, where they come from and how they can used in managing Oracle databases. The examples in this paper will be from Oracle8, although this information is applicable to Oracle8i, as well as Oracle7.

What Are Database Statistics?

Database statistics are metrics that describe the objects in an Oracle database. The Database Statistics are stored in the tables of the data dictionary. The data dictionary is the internal metadirectory of an Oracle database which contains the definitions of all the objects in the database. In addition to the metadata defining the structure of the database objects, the tables also contain metadata attributes describing the current status of these objects.

There are two general types of database statistics in an Oracle database: permanent and dynamic. Permanent statistics are stored in non-volatile tables in the data dictionary. They are preserved when a database is restarted. Permanent statistics generally are focused more on the physical definition of the database, such as the definition of objects, user permissions, auditing, etc.

The other class of database statistics is the dynamic statistics. These statistics are stored in volatile tables that are recreated whenever the database is restarted. Dynamic statistics generally deal with performance and state issues such as memory usage, number of open connections and object states.

This paper will focus mainly on the permanent statistics and their usage. The use of dynamic statistics for performance monitoring has been the subject of many white papers and presentations. However, there is much value to be gained from the use of the permanent statistics in areas such as fragmentation remediation, capacity planning and security auditing.

The tables of the data dictionary, both permanent and dynamic, are generally not directly accessible as the data is often stored in a cryptic fashion. To provide access to this information, Oracle provides predefined views as part of the data dictionary to enabling viewing the data in these tables. In the schema SYS, there are a couple hundred views that provide varying levels of access to these tables.

The views that we will mainly be concerned with in this paper are the ALL_*, DBA_* and USER_* views as they provide access to the permanent statistics. There is also a series of views titled V_$* that provide access to the dynamic statistics. As mentioned above, the dynamic statistics are not the focus of this paper.

The ALL_*, DBA_* and USER_* views are generally duplicative of each other. However, there are some differences in their scope and the information contained.

The USER_* views are intended for users to view information about the objects in their schema. Because of this, the USER_* views don’t contain an OWNER column, as all objects accessible through that view belong to the user.

The ALL_* views are also intended for use by the users. The major difference between the USER_* views and the ALL_* views is that the latter allows access to information about all objects that the user has access to, including objects outside of the user’s schema. For this reason, the ALL_* views also include an OWNER column to show the schema that objects belong to.

The DBA_* views are intended for use by DBAs and access to them requires that the user have the system privilege SELECT ANY TABLE
. There is also some additional information contained in the DBA_* views which Oracle feels in mainly of interest to administrators. As the audience of this paper is mainly database administrators, this paper will use the DBA_* views in the examples.

Where Do Database Statistics Come From?

Database Statistics are maintained in two ways, automatically by the database and through the use of the ANALYZE command. The table below shows the statistics that are maintained for tables in an Oracle8 database.
:

Attribute
Description
ANALYZE req’d?

OWNER
Owner of the table

TABLE_NAME
Name of the table

TABLESPACE_NAME
Name of the tablespace containing the table

CLUSTER_NAME
Name of the cluster, if any, to which the table belongs

IOT_NAME
Name of the index organized table, if any, to which the overflow entry belongs

PCT_FREE
Minimum percentage of free space in a block

PCT_USED
Minimum percentage of used space in a block

INI_TRANS
Initial number of transactions

MAX_TRANS
Maximum number of transactions

INITIAL_EXTENT
Size of the initial extent in bytes

NEXT_EXTENT
Size of secondary extents in bytes

MIN_EXTENTS
Minimum number of extents allowed in the segment

MAX_EXTENTS
Maximum number of extents allowed in the segment

PCT_INCREASE
Percentage increase in extent size

FREELISTS
Number of process freelists allocated to this segment

FREELIST_GROUPS
Number of freelist groups allocated to this segment

LOGGING
Whether logging is enabled (YES or NO)

BACKED_UP
Has table been backed up since last modification?

NUM_ROWS
Number of rows returned by the ANALYZE command
Yes

BLOCKS
The number of used data blocks in the table
Yes

EMPTY_BLOCKS
The number of empty (never used) data blocks in the table
Yes

AVG_SPACE
The average available free space in the table
Yes

CHAIN_CNT
The number of chained rows in the table
Yes

AVG_ROW_LEN
The average row length, including row overhead
Yes

AVG_SPACE_FREELIST_BLOCKS
The average freespace of all blocks on a freelist
Yes

NUM_FREELIST_BLOCKS
The number of blocks on the freelist
Yes

DEGREE
Number of query servers used for a full-table scan

INSTANCES
The number of instances across which the table is to be scanned

CACHE
Whether the table is to be cached in the buffer cache

TABLE_LOCK
Whether table locking is enabled or disabled

SAMPLE_SIZE
Sample size used in analyzing this table
Yes

LAST_ANALYZED
Date of the most recent time this table was analyzed
Yes

PARTITIONED
Indicates whether this table is partitioned. Set to YES if it is partitioned

IOT_TYPE
If this is an index organized table, then IOT_TYPE is IOT or IOT_OVERFLOW. If this is not an index organized table, then IOT_TYPE is NULL

TEMPORARY
Whether the table is temporary (Y or N)

NESTED
Is the table a nested table?

BUFFER_POOL
Name of the default buffer pool for the appropriate object

The third column in the table above, titled “ANALYZE req’d?”, provides some insight into how the statistics are maintained in a database. There are two methods by which statistics are maintained in the data dictionary: some are maintained automatically by the database, others are maintained by running the ANALYZE command specifically.

Statistics Automatically Maintained By The Database

Most of the information in the data dictionary is maintained automatically during the operation of the database. For instance, when a table object is created most of the information in the CREATE TABLE statement (or the associated defaults) is recorded in the dictionary record for that table. As the object is modified (such as being moved to a different tablespace, or when the table segment acquires a new extent due to table growth), the statistics in the data dictionary are updated automatically.

The important effect of this automatic maintenance is that many database statistics, such as location information (OWNER, TABLESPACE, etc.), extent information (PCT_FREE, PCT_USED, NEXT_EXTENT, etc.) and performance information (CACHE, PARTITIONED, BUFFER_POOL, etc.) are always accurate. No administrator intervention is required to maintain these statistics.

Statistics Maintained By The ANALYZE Command

Some statistics are maintained by running the ANALYZE command. ANALYZE is an internal process in an Oracle database (beginning with Oracle7) that will interrogate the data in an object and derive performance metrics associated with that data. ANALYZE was introduced with the inclusion of the cost-based optimizer. The optimizer, when running in COST or CHOOSE modes, makes use of theses metrics to determine what the actual resource cost of a query will be and develops the most efficient execution plan based on the actual data metrics.

When an object is first created in an Oracle database, any statistics that are gathered by ANALYZE will have NULL values in the data dictionary. These statistics will be populated when ANALYZE is first run on the object. These statistics will remain in the data dictionary until ANALYZE is re-executed, or until they are specifically deleted (with the ANALYZE DELETE STATISTICS command).

It is important to note as the objects changes over time (i.e., as rows are added and/or deleted from a table or the table is altered) the statistics can become out-of-date. Any decisions based on this information, whether by the optimizer or by an administrator, will be suspect. It is for this reason that regular procedures for running ANALYZE on an Oracle database be implemented by the database administrator.

The greatest liability of the ANALYZE command is its impact on the database. As ANALYZE performs a physical interrogation of the data in an object, it consumes a lot of database resources during execution. Execution can take many hours, or even days, on large objects.

To minimize the impact of running ANALYZE on a database, ANALYZE can be run in a sampling mode where only a certain percentage or number of rows are analyzed. This mode, ANALYZE ESTIMATE, will interrogate a sampling from the database and generate the statistics from this sample. The results of this methodology are surprisingly accurate. A general rule of thumb is that an analysis of 5 percent of the rows in a table will give statistics that are 90% accurate and an analysis of 15 percent of the rows will give statistics that are 95% percent accurate.

A series of ANALYZEs were run on a small sample table of 681 rows. The results are shown in the table below:

Method
NUM_ROWS
BLOCKS
AVG_SPACE
AVG_ROW_LEN

Entire Table
681
639
798
1086

15% Estimate
686
639
823
1078

5% Estimate
701
639
863
1012

Developing an effective ANALYZE strategy for an Oracle database is very much a balancing act between keeping statistics up-to-date and minimizing the impact of ANALYZE executions against users of the database. The most effective technique is to develop an incremental ANALYZE strategy where subsets of database objects are analyzed during any quiet moments on the database. This schedule also needs to reflect that highly dynamic objects in a database (especially large tables) need to be analyzed more often than stagnant objects.

What Can You Learn From Statistics?

So far this paper has focused on what database statistics are and how they are created. Now we move to the subject of how we can use these statistics for the “care and feeding”, or long-term management of Oracle databases. There are many possible uses, but this paper will focus on three areas: fragmentation assessment, capacity planning and security auditing.

Fragmentation Assessment

Fragmentation in a database is akin to the file system fragmentation that most of us are familiar with. As objects in a database are altered and modified over time, the data of that object becomes fragmented, or physically distributed in the database. As database operations are optimized for accessing data that is contiguous, such as multi-block reads, data fragmentation will impact the performance of the database.

The major difference between file system fragmentation and database fragmentation is that the fragmentation occurs in multiple levels: at the extent level, the block level and in the structure of indexes. Compounding this issue is the fact that database objects may suffer from more than one type of fragmentation. Fragmentation remediation can be complicated as well; certain techniques to cure one type of fragmentation may actually make other types of fragmentation worse.

In the three sections below, the three types of fragmentation are discussed, including ways of using database statistics to discover what level of fragmentation may exist in a database object.

Extent Fragmentation

An extent is a group of contiguous data blocks that belong to a database object. Extent fragmentation is the condition where a database object is contained in multiple extents, but those extents are not physically contiguous. There is also a form of extent fragmentation where there are areas of data blocks in a tablespace that can not be formed into usable extents for storage of a database object. This occurs when the NEXT_EXTENT statistic is set to a size larger than the size of an available contiguous set of free blocks. Extent fragmentation decreases performance in an Oracle database, makes inefficient use of physical storage and can increase the chance of database failure due to objects reaching extent limits. The only way to completely remove extent fragmentation from an Oracle database is to perform a tablespace reorganization where all the objects in the tablespace are unloaded, objects are recreated using contiguous extents and the data is reloaded.

The is also a potential for database failure when an object tries to allocate a new extent beyond it’s extent limits as defined by the MAX_EXTENTS statistic in the data dictionary. In Oracle v7.3, a new parameter was introduced, UNLIMITED EXTENTS, that would seem to address this issue. Unfortunately, using UNLIMITED EXTENTS will cause a chained segment header in the database blocks, causing a negative impact on performance.

The number of extents in a database object is stored in the view DBA_SEGMENTS. To view the segment information, simply run the following query:

SELECT * FROM dba_segments;

This will give a listing of all the objects in the database. The number of extents is in the EXTENTS column. In a large database, this will give an unmanageable list, so you might try the following:

To list the objects with more than 50 segments (which will impact performance), use the following query:

SELECT * FROM dba_segments WHERE extents > 50;

To list the objects that are close to their extent limits and could cause a failure, use the following query:

SELECT * FROM dba_segments WHERE extents > (max_extents - 20);

The way to decrease the number extents in a table is through a table reorganization. In this process the table is unloaded, dropped and re-created with larger extent parameters, then reloaded. In a tablespace with many objects, it may not be possible to recreate the table with larger extents. To check for the available free extents in a database, use the DBA_FREE_SPACE view:

SELECT * FROM dba_free_space;

This query will give more accurate results after the data has been exported, the object dropped and the free extents coalesced with the ALTER TABLESPACE COALESCE command. It is important to note that the largest free space may not be in the same tablespace as the object was originally located. In this case, remember to change the TABLESPACE name in the CREATE TABLE command so the table is recreated in a tablespace with an adequate amount of free space.

Block Fragmentation

The second type of fragmentation is block fragmentation. Block fragmentation occurs in two forms, row migration and row chaining. Row migration occurs during an UPDATE statement where the total length of the new row data is longer than the old row length, and the new row data won’t fit into the current block. In this instance, the row data is migrated to a new block (which is probably not in an adjacent block) and a forwarding pointer is left in the old block. Row chaining occurs when a data row is too long to fit in a block and has to be chained across several blocks. This is especially prevalent in tables with LONG, LONGRAW or RAW datatypes.

Both of these types of block fragmentation impact performance as they force the database to read several blocks, which are probably not contiguous, in order to assemble the row data. The major difference between row migration and row chaining is that row migration can be cured through a reorganization, while row chaining can only be eliminated by increasing the block size (if possible on the host operating system) of the tablespace data files. The effect of row chaining can be minimized by a table reorganization, which will ensure that the row chains are in contiguous blocks.

Compounding this issue is the fact that the Oracle ANALYZE command doesn’t differentiate between chained rows and migrated rows and counts both types of rows in the CHAIN_CNT statistic. This information can be viewed (after the table has been analyzed) by viewing the CHAIN_CNT statistic;

SELECT owner, table_name, chain_cnt FROM dba_tables;

Oracle Corp. does recognize the difference between chained rows and migrated rows and suggests the following technique
:

To reduce migrated and chained rows in an existing table, follow these steps:

1.Use the ANALYZE command to collect information about migrated and chained rows. For example:

ANALYZE TABLE order_hist LIST CHAINED ROWS;

2.Query the output table:

SELECT * FROM chained_rows WHERE table_name = 'ORDER_HIST';

3.If the output table shows that you have many migrated or chained rows, follow these steps to eliminate migrated rows:

a.Create an intermediate table with the same columns as the existing table to hold the migrated and chained rows:

CREATE TABLE int_order_hist AS SELECT * FROM order_hist WHERE ROWID IN (SELECT head_rowid FROM chained_rows WHERE table_name = 'ORDER_HIST');

b.Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist WHERE ROWID IN (SELECT head_rowid FROM chained_rows WHERE table_name = 'ORDER_HIST');

c.Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist SELECT * FROM int_order_hist;

d.Drop the intermediate table:

DROP TABLE int_order_history;

4.Delete the information collected in step 1 from the output table:

DELETE FROM chained_rows WHERE table_name = 'ORDER_HIST';

5.Use the ANALYZE command again and query the output table.

6.Any rows that are chained appear in the output table. You can only eliminate chained rows by increasing your data block size. It may not be possible to avoid chaining in all situations. Chaining is often unavoidable with tables that have a LONG column or long CHAR or VARCHAR2 columns.

This is a bit of a brute force approach and is impractical when dealing with large tables.

Index Fragmentation

The third type of fragmentation is index fragmentation. Indexes are b-tree structures that create an access tree to the data based on the range of data in the index column. If the values in the index column grow unevenly, or the range of values change, the depth of the b-tree (or b-level) will increase, making index operations less efficient.

For a good example of how index fragmentation occurs, consider an invoice table indexed on the invoice number. Over time, as your company conducts business, new invoice numbers at the higher end will be added to the table and the older invoice numbers will be archived off. The range of values in the index will steadily shift higher, but the b-tree range on which the index was originally created hasn’t been updated. This will force the index to use deeper b-levels on the high end of invoice numbers, while the b-levels on the low end may become “dead” as there might not be any data in that range in the table. This condition will cause the index performance to degrade over time.

Index statistics are contained in the DBA_INDEXES view. When looking for fragmented indexes use the following query:

SELECT owner, index_name, blevel FROM dba_indexes WHERE blevel > 4;

This will show all indexes with a BLEVEL of 5 or higher. A BLEVEL of 5 or higher is a good rule of thumb for an index that needs reorganization.

Index fragmentation is the easiest to cure as rebuilding the index with the ALTER INDEX command eliminates it. The cure can be a bit more complex however. As an index is a database object, it can also suffer from extent fragmentation as discussed above. When recreating indexes, proper planning is required to ensure an optimally performing index.

It is a common misconception that statistics such as DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY and AVG_DATA_BLOCKS_PER_KEY are related to the fragmentation of an index. These statistics actually provide insight into the usefulness of an index, not the level of fragmentation. If you compare the number of distinct keys in an index to the number of rows in an index, that will give a good measure of the worth of an index. The following query will show all indexes where the number of distinct keys is less than 25% of the number of rows:

SELECT owner, index_name, blevel, distinct_keys, num_rows FROM dba_indexes WHERE (distinct_keys < (num_rows * .25));

Any indexes that meet this criteria are probably not very effective and their need should be re-evaluated.

Capacity Planning

Database statistics can also be extremely useful in capacity planning. Capacity planning is the fine art of estimating required resources before they are actually needed. Using database statistics, you can determine growth rates of objects in your environment, determine when resource limits (like available space in a tablespace) will be exceeded. The end goal of proper resource planning is to have additional resources in place before they are needed.

The most import issue in capacity planning is determining the growth rates of objects in your database. In an Oracle database, database objects (tables, indexes, clusters, partitions, etc.) are stored in a segment. A segment is contained within a tablespace. A tablespace is made of datafiles, which are the physical storage units of the database. Space for object growth is allocated at the tablespace level. Given this, an effective way to track object growth is at the tablespace level.

The database statistics don’t directly track the total space available or the space used in a tablespace. This can be confirmed by browsing the DBA_TABLESPACES view. Instead, the total space available needs to be calculated by summing the space available in the datafiles that belong to each tablespace. This can be accomplished with the following query:

SELECT tablespace_name, SUM(blocks) FROM dba_data_files GROUP BY tablespace_name;

The space used needs to be calculated by summing the total space used of all the segments in a tablespace. This can be queried as follows:

SELECT tablespace_name, SUM(blocks) FROM dba_segments GROUP BY tablespace_name;

Both of these queries will give a point-in-time view of the current status of the size of objects and the space available to hold them in the database. However, the art of capacity planning is in understanding the trends of object growth in the database and being able to understand when limits will be reached given current resources.

To be able to see the trends in a database, we need to capture the statistics for space available and space used into separate tables to build a history. We can create a table to hold the segment growth statistics:

CREATE TABLE segment_growth

 (tablespace_name VARCHAR2 (30) NOT NULL, blocks_used NUMBER, sample_date DATE);

Next, we create a table to hold the space available statistics:

CREATE TABLE tablespace_size

 (tablespace_name VARCHAR2 (30) NOT NULL, blocks_avail NUMBER, sample_date DATE);

We can then use the following queries to populate the segment size statistics into the segment history table:

INSERT INTO segment_growth (tablespace_name, blocks_used, sample_date)

 SELECT tablespace_name, SUM(blocks), sysdate FROM dba_segments GROUP BY tablespace_name;

The following script will populate space available statisitcs into the space available history table:

INSERT INTO tablespace_size (tablespace_name, blocks_avail, sample_date)

 SELECT tablespace_name, SUM(blocks), sysdate FROM dba_data_files GROUP BY tablespace_name;

If these scripts are run on a regular basis, like monthly, a good object growth history will be built. The following query can then be run joining the two history tables to show the growth trend of objects in the database. In this case, we are looking at the growth of objects in the tablespace T_TBDEF16:

SELECT a.tablespace_name, blocks_avail, blocks_used, a.sample_date

 FROM segment_growth a, tablespace_size b

 WHERE a.tablespace_name = b.tablespace_name AND ROUND(a.sample_date) = ROUND(b.sample_date)

 AND a.tablespace_name = ‘T_TBDEF16’ ORDER BY a.sample_date;

TABLESPACE_NAME
BLOCKS_AVAIL
BLOCKS_USED
SAMPLE_DATE

T_TBDEF16
1024
245
1-NOV-98

T_TBDEF16
1024
320
1-DEC-98

T_TBDEF16
1024
385
1-JAN-99

T_TBDEF16
1024
625
1-FEB-99

T_TBDEF16
1024
835
1-MAR-99

Given this perspective, it is easy to see that this tablespace will run out of growth room in about a month’s time. We can then proactively add datafiles to the tablespace, accommodating this growth before it happens. From a business perspective, this can also be helpful in justifying the cost of new storage space purchases that may be required to support this growth.

Security Auditing

Keeping a database secure in a production environment is a requirement that is very easy to understand. Users of a database should have adequate permissions to do their work unhindered, but should not have permissions that would allow them to cause damage to the database, or the company’s data. In the real world, however, configurations are not always optimal. User ID’s may have been configured a certain way to allow installation of a new software module, but were never returned back to a standard configuration. If this is true in your database, it’s a problem just waiting to happen.

Security auditing is the process of giving your database configuration a sanity check. Making sure that users, roles and privileges are all configured properly and that those special “short-term” configurations haven’t been overlooked.

The data dictionary provides a wealth of information regarding the configuration of the database. We’ll look at two very common issues below and how to use the database statistics to audit them.

User ID with defaults set to SYSTEM

In an Oracle database, user IDs have defaults for both the default tablespace where new objects are formed, and a tablespace where temporary operations are performed. It is possible to configure one or both of these to default to the SYSTEM tablespace, which could lead to complete system failure.

To audit which users have the default tablespace or temporary tablespace set to SYSTEM, use the following query:

SELECT username, user_id, default_tablespace, temporary_tablespace FROM dba_users

 WHERE default_tablespace = 'SYSTEM' or temporary_tablespace = 'SYSTEM';

USERNAME
USER_ID
DEFAULT_TABLESPACE
TEMPORARY_TABLESPACE

SYS
0
SYSTEM
TEMP

DBSNMP
17
SYSTEM
SYSTEM

TRACESVR
19
SYSTEM
SYSTEM

DRSYS
26
SYSTEM
SYSTEM

DEAN
29
USERS
SYSTEM

ROSIE
60
SYSTEM
SYSTEM

If you find any users that have their default tablespace set to SYSTEM, you should also run the following query to see if they have created any object segments there:

SELECT owner, segment_name, tablespace_name FROM dba_segments

 WHERE tablespace_name = ‘SYSTEM’ AND owner <> ‘SYS’ AND owner <> ‘SYSTEM’;

OWNER
SEGMENT_NAME
TABLESPACE_NAME

DMC
PART_TAB_FILES
SYSTEM

ROSIE
FILL_TAB
SYSTEM

DMC
SYS_C001069
SYSTEM

DMC
SYS_C001072
SYSTEM

DMC
SYS_C001077
SYSTEM

In some instances, there may be object segments that don’t belong to SYS or SYSTEM that need to be located in the SYSTEM tablespace. In example, the table segments above with the owner DMC are used by a defragmentation tool. The segment belonging to Rosie, however, should probably be moved to a different tablespace.

Users with Directly Granted or Inherited DBA Roles

The DBA role provides a user with unlimited access to the database and should be restricted to only those administrative personnel that truly need to have that much access. To simply check which users been granted the DBA role, use the following query:

SELECT * FROM dba_role_privs WHERE granted_role = ‘DBA’;

This will show users that have been directly granted the DBA role. However, users can inherit the DBA role if a role they have been granted has in turn been granted the DBA role. To check for this situation, use the following query:

SELECT grantee, a.granted_role, b.granted_role inherited_role FROM dba_role_privs a, role_role_privs b

WHERE a.granted_role = b.role AND (a.granted_role = ‘DBA’ OR b.granted_role = ‘DBA’);

GRANTEE
GRANTED_ROLE
INHERITED_ROLE

RICKW
DBA
EXP_FULL_DATABASE

RICKW
DBA
IMP_FULL_DATABASE

RICKW
DBA
SELECT_CATALOG_ROLE

ROSIE
APP_MGR
DBA

SYS
DBA
DELETE_CATALOG_ROLE

SYS
DBA
EXECUTE_CATALOG_ROLE

SYS
DBA
EXP_FULL_DATABASE

SYS
DBA
IMP_FULL_DATABASE

In this case, we can see that Rosie has inherited the DBA role from the role APP_MGR. Rosie’s need for this level of access should be occasionally reviewed.

Closing

In this paper, we have focused on the power of database statistics in an Oracle database. We have discussed how they are created and where the are maintained. We have also given a couple of examples of how they can be used in Fragmentation Assessment, Capacity Planning and Security Auditing.

This paper has provided a high-level overview of the power of database statistics. If you want to learn more, grab the Oracle8 Server Reference, Chapter 2 “Static Data Dictionary Views” and start exploring.

� For more information, see Oracle8 Server Concepts page 4-5, Oracle8 Server Reference starting at page 2-1.

� Source: Attribute and Description columns from Oracle8 Server Reference, page 2-90.

� Source: Oracle8 Server Tuning, pages 15-32,33

Paper #157 / Page 10
Paper #157 / Page 9

