Deriving test data from a production database

Sam Cappello, Envision Utility Software Corp. Eugene King, Eugene King Software Specialist
Introduction

All software needs to be tested before it is implemented in a production environment. Our goal is to provide a framework for developing test data sets from a live production environment. With the ability to generate fresh databases of varying sizes, many of the reasons for testing in the production database are eliminated. We will approach this by first finding a common piece of data—a key that will drive the data we extract. Using this key (and possibly others) we will define the relationships that each of the tables in our application’s schema has to this key. We will use this data to drive SQL code that will build other SQL code for extracting the data. Then we will use more meta- SQL or dynamic SQL to generate the rest of the schema objects. Finally, we will perform a set of post-processing actions that can include scrambling the data so it can be used for demos.

Initial Setup

Choose a driving table

 You must first determine the driving data in your database. This should be fairly straightforward – especially if you are familiar with your system, or have a data model of it. In our example of an order entry system, the customers are the driving data. We will select a subset of customers, then determine how to select data from the other tables based on that subset of customers. In other instances, you might want to use a different driving table for performing specific tests; but the principles outlined here remain the same. The code for the example system can be found in Appendix F.

How to select the source data for the test set

The focus of this paper is about the mechanics of creating the test set, but choosing the data is perhaps the most important and controversial aspect, although really the easiest. Since we work with electric utilities, these examples will primarily focus on this kind of data, but the principles will work for other systems too.

The process of selecting the data for the test set can be controversial, because everyone has some opinion about what comprises a good data set and might want to argue about the test set data. Some people might think that a completely random subset of data is best – this is probably popular with auditors testing the system. You might also find that users have favorite records they think should be included in the test set, or they might want to weight the data selection in favor of certain types of records. We recommend a combination of random and representative records. The test set data, whether for testing, training, or demonstration should have enough data to be interesting but still be small enough so that tasks can be performed quickly. It is more important that the data contains enough variety to test, train, or demonstrate all aspects of your system. That is the intent of a good test set. Let's explain how you can accomplish these goals.

The basic strategy for creating a test set is to review your data and decide which are the most important system features to demonstrate, or those that might aid with testing and training. If you are working with a payroll system, you should include both hourly and salaried employees. They should be from every income taxing entity and from several different salary ranges and hourly rates. If you are working with an order entry system, you should include sample customers from every sales tax district served and by sales volume. You want to make sure that your test set is representative of your total data, yet reasonable in size. Even though you may have several million rows in your data files, you could have a very good test set with a few hundred rows. If your total data is only a few thousand rows, creating a smaller test set is still appropriate because it reduces processing time and can demonstrate or test the system without overwhelming anyone with data.

If the data set you use is too large, tracking down problems becomes very difficult. A small data set will permit you to research any problem more easily and test more rapidly.

Of course, a big concern is that procedures work just as well for thousands of rows as it does for one or two. Make sure you include enough repetitions in your data so that problems related to the nth transaction get tested. We can explain this best if we use our utility experience. When creating our test set, we knew that utility consumers are billed on various rates and revenue classes—like residential, commercial, industrial, and lighting; also each consumer has an associated account status. To test, train, or demonstrate, we need to be sure that our sample data has rows from each of these groups.

For this example, there are 1573 rows (actually created by joining three tables to get the critical columns). There are six items that make up the criteria for the groups. They are rate, revenue class, status, district, underground or overhead, and tax district.

Rate
Revenue

Class
Status
District
Overhead Underground
Tax

Districts

Count of Values
23
9
4
6
2
50

Maximum Possible
23
207
828
4968
9936
496800

Actual
23
23
37
141
156
354

To explain this table, first we have 23 separate rates, nine revenue classes, four statuses, six districts, only two values for overhead or underground, and 50 tax districts. With that knowledge, we would expect that we could have 207 different rate and revenue combinations (23 rates times 9 revenue classes), but the last row in the table shows only 23 rate and revenue combinations. The second row shows that if all possible combinations existed, we would have almost half a million groups -- not a practical data set size. In fact, there are only 354 combinations of the data — probably too small for a good test set. But, if we get three consumers from each group, we would expect about 1000 rows of data, a good test set size.

Let’s go back. Suppose we had not included the tax district in our grouping; this would give us 156 groups. So, if we included six from each group (1000/156 = 6.4), we would get about 936 consumers. Actually, it will be less because we suspect that some groups may have fewer than six rows in the group. Since we know our data, we decided that including the tax district improved the quality of our test data.

If we thought 354 groups were not enough, we could look at our data and choose another column that might expand the number of groups. For example, we might decide that “use code” (home, well, barn, shop, store, and so forth) might add some nice variety. Or, we could add in tax-exempt versus non tax-exempt, which might double the number of groups. Or, we might elect to calculate a data element that groups records by usage range. The possibilities are almost endless. Doing a good job here involves knowing your data well.

It is possible to create so many groups that you only need one row per group for your test set. Remember that once you have defined some groups, adding a new column to the group can cause the number of groups to grow rapidly. For example, if you added a column that has three values, your number of groups could triple. Of course, some combinations of data will not exist, so it can be tricky to get an exact number for your test set.

If we use only one consumer from each group defined above, we will still have more than one row for each rate code, or each district. So, if someone does a query, they will probably see several rows selected; but not hundreds and thousands. A good test set!

Now we add the random aspects, so that we do not get the same consumers in every test set. Let’s take a look at the code so you can see how this works; this is done in SQL included as Appendix B. However, we think it appropriate to do this in an Oracle forms program so the end user has some ability to experiment easily without being a SQL programmer.

Our system already has a permanent table in which we can store the primary key for each consumer used in the test set.

1. We create a temporary table.

2. Add in a group and random column.

3. We determine the next test set number and “reserve” it.

4. Use PL/SQL to insert a row with the primary key, test set number, group number, and random number into the temporary table.

5. Use PL/SQL again to sequentially number rows in each group.

6. Eliminate any duplicate primary keys created.

7. Report the number of rows and groups.

8. Ask for the number of rows to use from each group of data.

9. Insert a row in the test set table for each consumer needed for each group.

10. Clean up the temporary table.

11. You are ready to run the scripts to create all the related tables.

Some final comments on the makeup of the data in test sets:

Random numbers: Because Oracle has no built-in function to produce random numbers, we searched on the web and found a way to do it. It took some experimentation, but we found something that seemed to produce random numbers in the one to one million range. Although it may not stand up under statistical scrutiny, it is adequate for our purposes.

Once when we needed a test set for parallel testing, we had the users supplement our test set list of consumers with their favorite consumers. We provided a table that they maintained; the table was a list of consumers we always included in the test set. These consumers either were unique or had special problems that enhanced the testing or training. They violated the “randomness” rule, but I am not sure that was the most important issue.

Another method used to improve testing was choosing a complete data set at the beginning of the processing cycle and another set from the end of the cycle. From the ending data, we selected a test set, and then went back to the beginning data set for the actual data for the starting test data. We used the ending data to get all the transactions that had affected our test set. It gave us a pretty good environment to test transactions with actual data to use as input. This method needs a lot of disk space but can be used to develop some very useful test data. This gets into actual testing and paralleling, which is another paper or two.

Defining the relationships

Know your data – to extract meaningful data, you need to know the main relationships between the tables. If your tables have all of the primary and foreign key relationships defined for your application, this will be easy. If not, this is when the real work begins.

One of the keys to being successful in the Oracle world is leveraging all of your investments, whether they are in hardware, software, or time. Just as the cost-based optimizer tries to weed out as many rows as possible as soon as possible when choosing an execution path for your query, we can do the same when defining the relationships for our test set build. Some tables might not need any initial data. Other tables might need all of the rows from the source data. You can greatly reduce the number of relationships by identifying these tables first.

Create a repository

The next step in making life easier for yourself is to create a table with the names of all the tables your application uses. This table needs at least one other column to store the relational information. The most efficient format is that of a WHERE clause. This repository will become the core of the test set building process. By storing the relationships as WHERE clauses in the database and having a stable program that reads that table and builds the test set it is easy to create new test sets as your database changes.

For all of the tables that require no data, WHERE 1=2 is all that is needed. Very small tables, code lookup tables and the like that can be brought over in their entirety, can be handled with WHERE 1=1. So, if you start with a table consisting of the names of all the tables in your application, then you weed out all the easy tables by putting a WHERE clause in for them, you can get a list of all the tables that need to be defined

Create table testset_tables (table_name varchar2(30),

 Notes varchar2(60),

 Testset_where_clause varchar2(2000));

In our application, we already had a table called conv_table_actions, which we use to control the way data was dropped before re-converting from our old system. Tables with no WHERE clause in the repository do not get created. If all of your application’s tables are in the same schema, you can use this to initially populate the repository, and later to keep it up to date:

Insert into testset_tables (table_name) Select table_name from all_tables Where owner = ‘&&APP_OWNER’

 And table_name not in (select table_name From testset_tables);

Forming the WHERE clause

I had decided initially on using the create table … as select * from … where … command for creating new tables based on the old data. Given the list of tables and WHERE clauses I could generate the commands in a SQL script. The WHERE clauses are formed by linking the table back to the test_set table via the relationship we have established. In our example, the driving data is the customer_number in the customers table. The test_set table contains a list of the customer numbers we want to include in our test set. The most obvious way to obtain all the data in the customers table based on the customer numbers in the test_set table is to use a statement like this:

Select * From customers Where customer_number in (select customer_number From test_set);

This works well if you are building a test set on the same machine that the production database is on, but not too well if you want to build the test set on another machine or in another database. This led us to use the COPY command, as you will see in the examples later. You can make a quick first pass at identifying the tables that have the primary key of your driving table in them:

Update testset_tables set testset_where_clause =

 ‘where &&PRIMARY_KEY_COL in (select ‘&&PRIMARY_KEY_COL’||chr(10)||

 ‘ from test_set);’

 Where table_name in (select table_name From all_tab_columns Where column_name = ‘&&PRIMARY_KEY_COL’);

Then, use a script like this to generate a list of tables that require research:

Select table_name From testset_tables Where testset_where_clause is null;

The approach I took to resolve the unknown relationships was fairly convoluted, but in the end, it worked out. My first instinct was to make a pass at the list myself, identifying any tables that I thought I could on my own. For this list, I listed the tables/columns to use to link back to the driving table. Then I mailed the list with my ideas to all of the analysts, developers and support people on the project. Some made corrections to my attempts and some actually provided links. The Designer/2000 (CASE) team lead showed me how to look up foreign key relationships in Designer/2000. This could have helped, except that our CASE repository was seriously out of sync with the production table structures. I created WHERE clauses for the defined tables, and tried to group similar tables together to save time. Then I printed out another list of the undefined tables.

As the list of undefined tables shrank, I subdivided it by developer. In other words, if Frank worked on process X, I gathered all the tables used by process X and walked over to Frank’s desk. I didn’t leave until we went through all the tables. It was amazing how many of the tables either needed no data, or could come over intact. It was also amazing how quick the work went when we worked together.

If you use Developer/2000, you can create a quick form to allow editing of the data in the repository. I used a combination of Developer/2000, SQL*Plus, and a few third-party database access tools. Using what is outlined here, similar tools could be built in the programming environment of your choice.

Building the engine

Now that I had a few of the WHERE clauses in the repository, I began creating the core test set building scripts. The first step is to generate a script to copy the tables to the new schema. Because the COPY command only creates the table and the data in the table, I needed scripts to create the sequences, indexes, views, triggers, packages, procedures and functions. At first I was generating one giant script, then logging on to the target database to run it. The first problem I encountered was timing. Before tuning, the COPY statements took 12 hours for a very small test set. By the time I created the sequences, the data in the tables had values much larger than the sequence number generators. So, I changed the scripts to generate the COPY commands, execute the COPY commands, and generate the DDL for all of the stored code, all while logged on to the source database. Then the script logs into the target database and runs the DDL. This kept things in sync while working with smaller test sets, but I realized that the larger test sets would have to be built overnight to ensure a consistent view of the data.

As testing of the test set generator progressed, the script evolved. For tuning reasons, the time is displayed before each COPY command. I tried using set time on and set timing on, but the COPY command does not trigger the timing statistics, and having the prompt display the time was too confusing when looking at a log with hundreds of table creates. By displaying the time once at the start of each COPY command, I could quickly scan the log file and note when the time took a large jump. I tried autotrace, but copy didn’t fire it either. But more on tuning later. The dashes are added at the end of each line because the copy command requires them as line continuation characters.

In the original code, both the source and destination database connect strings were specified in the COPY command. This would make the script universal, or able to run from either the source or destination database. In order to maintain some security, we now connect as the source database user before executing the COPY commands, and force the use of the default connection as the source of the data. This limits us to only having the destination password in the scripts and log files. This is not as much of a security problem as the testset does not need to be as secure as the source database. Below is an example of the COPY commands that are generated, and the output that is produced when the COPY commands are executed.

set arraysize 1000 copycommit 2 long 50000

spool testset.log

prompt

prompt Copying Tables

prompt

col ctime format a30

prompt On BL_ACCOUNTS

set arrays 1

select to_char(sysdate,'MM/DD/YY HH24:MI:SS') ctime

from dual;

rem

set arrays 1000

copy to user/userpw@sourcedb -

create BL_ACCOUNTS -

using select * from BL_ACCOUNTS -

where account_number in (-

select account_number from bl_test_sets -

where test_set = &&x_testset -

and co = '&&x_co') -

and co = '&&x_co'

prompt On BL_ADJUSTMENT_TRX

set arrays 1

select to_char(sysdate,'MM/DD/YY HH24:MI:SS') ctime

from dual

rem

set arrays 1000

copy to user/userpw@sourcedb -

create BL_ADJUSTMENT_TRX -

using select * from BL_ADJUSTMENT_TRX -

where exists (select 'x' from bl_accounts a -

 where bl_adjustment_trx.consumer_number = a.consumer_number -

and account_number in -

 (select account_number from bl_test_sets -

 where test_set = &&x_testset -

 and co = '&&x_co') -

 and co = '&&x_co') -

and co = '&&x_co'
Copying Tables

On BL_ACCOUNTS

07/23/98 23:10:45

Table BL_ACCOUNTS created.

 4887 rows selected from DEFAULT HOST connection.

 4887 rows inserted into BL_ACCOUNTS.

 4887 rows committed into BL_ACCOUNTS at user@sourcedb.

On BL_ADJUSTMENT_TRX

07/23/98 23:11:37

Table BL_ADJUSTMENT_TRX created.

 186 rows selected from DEFAULT HOST connection.

 186 rows inserted into BL_ADJUSTMENT_TRX.

 186 rows committed into BL_ADJUSTMENT_TRX at user@sourcedb.

Does size matter?

Earlier we discussed the reasons for creating test sets, and how working with smaller data sets can be useful even if your full data set is not terribly large. The largest full data set we have worked with so far has approximately 10 million rows in the largest table, and 350+ tables. The driving table (BL_ACCOUNTS in our case) has approximately 200,000 rows. When we were initially testing the test set build scripts, we selected only 3 accounts from our driving table. When we began testing the WHERE clauses we were writing, we worked with 1000 accounts. When tuning was the main concern, working with 5000 accounts really illustrated the slower code.

When we are generating test sets for use by others, slightly different sizing criteria come into play. For most demo data sets, 1000 rows in the driving table provide enough data to do effective demos, and fit nicely on a laptop computer. A test database shared by a few people will usually get a test set based on 5000 rows. If individual developers or testers want their own database for testing a specific process, a test set based on 1000 rows or less, if it meets their needs, allows more test sets to reside on a single server. The table below illustrates how the larger tables scaled across different size test sets.

TABLE_NAME Full Set Test Set 1 Test Set 2

------------------------------ ---------- ---------- ----------

BL_ACCOUNTS 199,232 4,884 1,079

BL_ASC 199,402 6,505 1,573

BL_BILLING_DETAILS 10,734,244 400,371 107,827

BL_BILLING_DET_READS 3,056,716 105,661 30,232

BL_BILLING_HEADER 3,317,710 110,648 28,771

BL_BILLING_SNAPSHOT 196,061 0 0

BL_BILLING_TO_GL 1,795,668 67,064 14,152

BL_CAPITAL_CREDITS 773,360 0 0

BL_CREDIT_HISTORY 2,123,331 66,323 16,525

BL_CR_OTHER_COUNT 477,388 417,775 227,363

BL_CR_TRX 599,803 16,983 4,366

BL_CR_TRX_GROUP 576,102 508,610 4,228

BL_CR_TRX_MANUAL 814,099 28,149 6,261

BL_CR_TRX_TENDER 578,396 510,168 297,032

BL_READINGS 3,830,395 219,135 49,346

BL_REMOTE_UP_LOADS 932,714 25,904 7,025

BL_TRX_SUMMARY 5,309,830 194,668 42,568

Number of rows in test sets of different sizes

Complex possibilities

As I started propagating the generated test data to databases used by data experts, “problems” began to be reported. Apparently, the data relationships were more complex than first indicated. After replacing some of the testing and training databases with partially correct data, people then began to provide feedback on the real data relationships. To get back to the driving primary key, I typically had to join two or three tables. In at least one case, the relationships were so complex that the easiest solution was to create a temporary table. I would populate the temporary table with the required key values, then use it to drive the COPY command queries. This works especially well when more than one table used the same logic, and the logic was slow. By doing the slow query once, many COPY commands ran much faster.

In our application, we store data for multiple companies in the same tables; this means that each table stores the company identifier in a co column. One important application design requirement is the ability to generate multiple test sets with different data. For this requirement, we added a test set number to the test_set table. The co and test_set columns added two other criteria to our WHERE clauses. We also planned to incorporate this script into the actual application so end users could create test sets. This means that we will either move the entire script into Oracle*Forms or call it from a form.

Calling the script from a form would enhance security; however, I left it as a SQL script initially. To make it easier to run, I accepted the source and destination connect strings, source company code, test set number and optionally the company code to change to from the command line. I created a shell script to start SQL*Plus and run the script with the parameters. Therefore, whenever I want to test the script, I can simply resubmit the job.

Some of the WHERE clauses included unions and additional selects to get data unrelated to the primary key in our test set. In our utility application, spare meters, or meters that are not currently in use, need to be available in the inventory. Originally, I used meters not assigned to any of the accounts in our test set. I limited the select in the union to 30% of the total size of the test set by using the rownum pseudo-column.

where exists (select light_number from bl_connected_lights a

where bl_lights.light_number = a.light_number

 and service_location in (select service_location

 from bl_asc

 where account_number in (

 select account_number from bl_test_sets

 where test_set = &&x_testset

 and co = '&&x_co')

 and co = '&&x_co')

 and co = '&&x_co')

and co = '&&x_co'

union all

select * from bl_lights b

where not exists (select 'x'

 from bl_connected_lights c

 where b.light_number = c.light_number

 and co = '&&x_co')

and rownum < (select (count(*)*.3) from bl_test_sets

 where test_set = &&x_testset

 and co = '&&x_co')

and co = '&&x_co'

This approach might work in some situations, however I soon found out that it did not work in ours. The problem is that there are certain status codes and data in related tables that are not set correctly because the data really is in use for other accounts. In one case, the code required to find the unused data was too complex for a single statement, and had to be moved to a temporary table. In others, like the above example, I was able to do it in one statement.

As I traversed the links between the tables, I realized that if I got all the data that could possibly be required to make a complete data set, I would need all the source data. This would defeat the purpose of building test sets. I suppose there is a positive side to all of the foreign keys not being defined. In other cases, decisions about the amount of history to bring over had to be made. Although more history makes the test set better for testing and more realistic, a line had to be drawn.

Tuning

After the first few passes, I tried a larger test set. After 24 hours, the build was still running. Obviously, we needed to tune the WHERE clauses. As I stated earlier, the first significant step in tuning was to display the time at the start of each COPY command. This made it very easy to pick out the slower statements. Before the 24 hour-run finished, I terminated it. I used the partial log file as a starting point for tuning. It seemed a waste to let it keep running when I knew that there were many more iterations to come…

I followed the standard tuning procedures – explain plan, autotrace, set timing on, and so forth - from this point on. Although this paper is not on tuning there were a few tuning techniques that were specific to this project that bear mentioning. The first case I have already discussed – where a complex WHERE clause that could not be satisfactorily tuned was being used for multiple tables. By creating a temporary table with the final driving key required to extract the data, the slow code only had to run once. In most cases, it also seemed to run faster, probably because it was joined with one less table at that point. Then I had a simple two-table join to get the data from the table.

The second method was to replace the in verb with the exists verb; this especially made a difference when three or more tables were involved. However, in some cases it made no difference. I found no noticeable difference when doing a direct in against the test_set table, so I elected to leave the in clause because it is easier to read and understand.

For the most part, tuning became a boring, repetitive process. I would make some changes, run the build, review the log file to find the statements that were taking the most time, and then tune them. A few times I had to get tuning help from the programmers. In some instances, I found errors in my WHERE clauses – they were selecting the wrong data – while tuning. In other cases, we found bugs in some of our software, when the data didn’t look right. For the most part, they were insignificant bugs that would not be noticed, but I did find a few incorrect foreign key constraints. In the beginning, I expected to find a lot of cases where I would have to create an index to speed things up, but this did not become necessary. In fact, I was also working on another project at the same time – dropping a number of redundant or inconsequential indexes. The lack of these indexes had no adverse effect on the performance of our applications or my test set builds.

Testing

After a minor bout of tuning, I turned again to testing. This was easier now, as more people needed test sets to test the software they were working on. I recruited the trainers, QC department, programmers, and sales demo people by offering them fresh data to work with. As they found problems, they helped me research them and get them fixed. At night, I would build a new test set and give it to them whenever they were ready for it. The basic test set building script didn’t change much; I was doing most of my work in the database, changing WHERE clauses using the maintenance screen I had created. The second source of feedback came from the database itself. As I generated new, larger test sets and started changing the WHERE clauses, foreign key constraints began to break. Sometimes, a minor change would cause a key constraint to have errors and start me on a search for the origin of the data. The errors would show up as the foreign key constraints or indexes were being created

After I determined that a test set build was no good and I had made changes to try and fix the problem, there were two approaches I took to testing my changes. For simple, single table changes I would drop the table and run just the copy for that table. For more complicated changes, changes involving constraints, or after I made several minor changes, I would drop the entire test set schema and start again. I used the drop_all.sql script (see appendix) to remove all of the schema objects as the schema owner. It might have been quicker to drop the user and recreate it, but you can run the drop script without involving a DBA or having to re-create the user with all the same privileges.

And now for the rest of the schema

Twice, I found out the hard way that the safest way to handle stored objects when working with test sets is to have the owner of the data also own all the stored objects. The second time I realized this we had created a copy of one of the tables in the main schema for one of the programmers. When he ran his update program, it looked great. Then, he went into a query screen, but the data looked the same as it had before he ran his process. After much head scratching and code reading, I realized that the inquiry screen uses a view to look at the table in question, and the programmer did not have his own copy of the view. This meant that when he accessed the view, the view pointed to the original table in the main schema, not his copy of the table.

The only safe method to guarantee this problem would not happen again was to write scripts to bring over all the other schema objects: indexes, constraints, views, sequences, triggers, packages, procedures, and functions. This might seem wasteful if there are a lot of test sets in your database, but it is the only way to be sure that the correct stored objects are being used with your data (or that the correct data is being used with your stored objects!). It is also the only way that different versions of stored code can be tested.

Some of these objects were simple to recreate. Others are stored in the data dictionary in multiple views and/or using long datatypes. The code we have come up with so far is not as satisfactory for these objects. A commentary of how the code was developed is in the expanded version of this paper, along with the code itself which can be found in Appendix C.

Post-build actions

Now that I have the WHERE clauses hopefully nailed down, I perform the following after building a new test set.

· Check all the log files for errors.

· Run a script that compiles any invalid objects and returns a report of any objects that are still invalid after it is done.

· If you end up with a good test set, analyze the tables and do an export before turning anyone loose on the data!

· Have someone who knows the system test the data before propagating it. When you think you are ready and have done as much testing as you can, get a real QC person to test the data. They will find things you never thought of looking for.

· If your test set is large enough, consider deriving storage parameters for the tables and indexes. One idea is to use a formula to generate the parameters based on the number of rows you are going to bring over and the average row length.

When all of the testing is complete, these steps can all be included in the main test set build script.

Scrambled or sunny side up?

If a test data set is going to be used internally for debugging or by a customer for testing at their site, the job is complete at this point. If you plan to show the data to anyone who is not supposed to see it, you need to scramble the data. Gene wrote the original scramble program so there would be data available for demonstrating the software to potential customers. He did this as a part of a conversion routine from our old system to the new Oracle based system. When our main source of test data moved from the old software (which also has extensive test data generation capabilities) to the new software, the need to generate test sets and scramble data became more urgent.

What to scramble

The first step is to determine what data needs to be scrambled. In our case, we decided names, addresses, and all phone numbers were the main data we needed to protect. As I looked at the data after scrambling it, I found names, addresses and phone numbers in places we hadn’t thought of. It was easy to find them because the state we used in our scrambled data was different from the state in the data we started with.

How to scramble

Once I had a list of all the columns that we wanted to change, I created a table with all those columns. We populated that table with fictitious names and addresses cobbled together from various sources. After some cleanup, when I had all the data the way I wanted it, I wrote it out as insert statements to a text file. I used a third-party tool to create the text file, but I could have written a sql script to do it. I could have even written it out as ASCII text and used SQL*Loader to bring it back in, but it was small (less than 1MB) so I left it as insert statements. That just makes it easier to reload on other databases as needed.

The final step was to write a simple PL/SQL routine to loop through the data I want to change and the table of new data and make the exchanges. Since a test set could be any size, and I only have about 3000 names in my names table, I loop through the table and keep a count of how many times I have looped. I append this number to the name so all the names are unique. There are probably other modifications that could be made to scramble the data in other ways.

When I ran our applications after the initial scramble, I noticed data that had not been scrambled. Our on-line help system displays the table and column name, so it was easy to track down the data that needed scrambling. Most of it was simple name and address replacements. There were phone numbers other than the main voice number, such as fax and work numbers, that needed scrambling. I decided to use the main number as a seed and use the TRANSLATE command to populate those fields.

There is a lookup table for city codes in our application. The new cities used in our scrambled addresses had to be added to this table, or else they would fail field level validation in our forms. There is also a table with names and addresses for the utility’s district offices. These names are scrambled by finding the cities with the most addresses after scrambling. Since I don’t know everything there is to know about the data structures in our application, I decided to do a final pass through the data dictionary. Searching for columns with names like city, state, addr, and name, I found at least one other table that potentially needed to be scrambled.

Conclusion

In the preceding pages we have detailed a framework for extracting test data sets from large production databases. The process of developing the framework and the details specific to our database led us to a better understanding of Oracle programming and our internal data structures. If you embark on a similar journey, we hope that our framework can be of assistance. The test sets we have built have been used for software demonstrations, development, testing, and training.

The expanded version of this paper along with the appendices is also available at http://www.gate.net/~samc/paper441.zip

Deriving Test Data from a Production Database Paper # 441 / Page 10

