Diving Into the Shared Pool – An In Depth Look at Tuning the Shared Pool (Part 1)

Michael Ault

Introduction

Perhaps one of the least understood areas of Oracle Shared Global Area optimization is tuning the shared pool. The generally accepted tuning methodology involves throwing memory into the pool until the problem goes under. In this article we will examine the shared pool and define a method for tuning the shared pool that uses measurement, not guesswork to drive the tuning methodologies. In this part one of a two part series I will show how to monitor and tune the shared SQL areas of the shared pool.

What is the shared pool?

Many people know that the shared pool is a part of the Oracle shared global area (SGA) but little else, what exactly is the shared pool? The shared pool contains several key Oracle performance related memory areas. If the shared pool is improperly sized then overall database performance will suffer, sometimes dramatically. Figure 1 diagrams the shared pool structure located inside the various Oracle SGAs.

[image: image1.wmf]PL/SQL

Procedures

Shared

SQL Area

Control

Structures

(Latches/Locks)

Library Caches

Dictionary

Caches

Control Structures

Char Set

Shared Pool

Request and

Response Queues

Used with MTS

Oracel 7 Shared Pool

PL/SQL

Procedures

Shared

SQL Area

Control

Structures

(Latches/Locks)

Library Caches

Dictionary

Caches

Control Structures

Char Set

Shared Pool

Request and

Response Queues

Used with MTS

IO Slaves

B/U--Restore

Large Pool

Oracle 8 Shared Pool

Figure 1: Oracle 7 and Oracle 8 Shared Pool Structures

As you can see from examining the structures pictured in Figure 1, the shared pool is separated into many substructures. The substructures of the shared pool fall into two broad areas, the fixed size areas that for a given database at a given point in time stay relatively constant in size and the variable size areas that grow and shrink according to user and program requirements.

In Figure 1 the areas inside the library caches substructure are variable in size while those outside the library caches (with the exception of the request and response queues used with MTS) stay relatively fixed in size. The sizes are determined based on an Oracle internal algorithm that ratios out the fixed areas based on overall shared pool size, a few of the intialization parameters and empirical determinations from previous versions. In early versions of Oracle (notably 6.2 and lower versions) the dictionary caches could be sized individually allowing a finer control of this aspect of the shared pool. With Oracle 7 the internal algorithm for sizing the data dictionary caches took control from the DBA.

The shared pool is used for objects that can be shared among all users such as table definitions, reusable SQL (although non-reusable SQL is also stored there), PL/SQL packages, procedures and functions. Cursor information is also stored in the shared pool. At a minimum the shared pool must be sized to accommodate the needs of the fixed areas plus a small amount of memory reserved for use in parsing SQL and PL/SQL statements or ORA-07445 errors will result.

Monitoring and Tuning the Shared Pool

Let me begin this section by stating that the default values for the shared pool size initialization parameters are almost always too small by at least a factor of four. Unless your database is limited to the basic scott/tiger type schema and your overall physical data size is less than a couple of hundred megabytes, even the "large" parameters are far too small. What parameters control the size of the shared pool? Essentially only one, SHARED_POOL_SIZE. The other shared pool parameters control how the variable space areas in the shared pool are parsed out, but not overall shared pool size. In Oracle8 a new area, the large pool, controlled by the LARGE_POOL_SIZE parameter is also present. Generally speaking I suggest you start at a shared pool size of 40 megabytes and move up from there. The large pool size will depend on the number of concurrent users, number of multi-threaded server servers and dispatchers and the sort requirements for the application.

What should be monitored to determine if the shared pool is too small? For this you need to wade into the data dictionary tables, specifically the V$SGASTAT and V$SQLAREA views. Figure 2 shows a report that shows how much of the shared pool is in use at any given time the script is run.

REM Script to report on shared pool usage

REM

column shared_pool_used format 9,999.99

column shared_pool_size format 9,999.99

column shared_pool_avail format 9,999.99

column shared_pool_pct format 999.99

@title80 'Shared Pool Summary'

spool rep_out\&db\shared_pool

select

 sum(a.bytes)/(1024*1024) shared_pool_used,

 max(b.value)/(1024*1024) shared_pool_size,

 (max(b.value)/(1024*1024))-(sum(a.bytes)/(1024*1024)) shared_pool_avail,

 (sum(a.bytes)/max(b.value))*100 shared_pool_pct

 from v$sgastat a, v$parameter b

where a.name in (

'reserved stopper',

'table definiti',

'dictionary cache',

'library cache',

'sql area',

'PL/SQL DIANA',

'SEQ S.O.') and

b.name='shared_pool_size';

spool off

ttitle off

Figure 2: Example Script to Show SGA Usage

The script in Figure 2 should be run periodically during times of normal and high usage of your database. The results will be similar to Figure 3. If your shared_pool_pct figures stay in the high nineties then you may need to increase the size of your shared pool, however, this isn't always the case.

Date: 11/18/98 Page: 1

Time: 04:16 PM Shared Pool Summary SYSTEM

 ORTEST1 database

SHARED_POOL_USED SHARED_POOL_SIZE SHARED_POOL_AVAIL SHARED_POOL_PCT

---------------- ---------------- ----------------- ---------------

 3.66 38.15 34.49 9.60

Figure 3: Example Output From Script In Figure 2.

To often all that is monitored is how much of the shared pool is filled, no one looks how is it filled; with good reusable SQL or bad throw away SQL. You must examine how the space is being used before you can decide whether the shared pool should be increased in size, decreased in size or perhaps a periodic flush schedule set up with the size remaining the same. So how can we determine what is in the shared pool and whether it is being properly reused or not? Let's look at a few more reports.

The first report we will examine shows how individual users are utilizing the shared pool. Before we can run the report a summary view of the V$SQLAREA view must be created, I unimaginatively call this view the SQL_SUMMARY view. The code for the SQL_SUMMARY view is shown in Figure 4.

rem FUNCTION: Creates summary of v_$sqlarea and dba_users for use in

rem sqlmem.sql and sqlsummary.sql reports

rem

rem

create or replace view sql_summary as

select

username, sharable_mem, persistent_mem, runtime_mem

from

sys.v_$sqlarea a, dba_users b

where

a.parsing_user_id = b.user_id;

rem

Figure 4: Example SQL Script to Create A View to Monitor Pool Usage By User

Once the SQL_SUMMARY view is created the script in Figure 5 is run to generate a summary report of SQL areas used by user. This shows the distribution of SQL areas and may show you that some users are hogging a disproportionate amount of the shared pool area. Usually, a user that is hogging a large volume of the shared pool is not using good SQL coding techniques which is generating a large number of non-reusable SQL areas.

rem

rem FUNCTION: Generate a summary of SQL Area Memory Usage

rem FUNCTION: uses the sqlsummary view.

rem showing user SQL memory usage

rem

rem sqlsum.sql

rem

column areas heading Used|Areas

column sharable format 999,999,999 heading Shared|Bytes

column persistent format 999,999,999 heading Persistent|Bytes

column runtime format 999,999,999 heading Runtime|Bytes

column username format a15 heading "User"

column mem_sum format 999,999,999
heading Mem|Sum

start title80 "Users SQL Area Memory Use"

spool rep_out\&db\sqlsum

set pages 59 lines 80

break on report

compute sum of sharable on report

compute sum of persistent on report

compute sum of runtime on report

compute sum of mem_sum on report

select

username,

sum(sharable_mem) Sharable,

sum(persistent_mem) Persistent,

sum(runtime_mem) Runtime ,

count(*) Areas,

sum(sharable_mem+persistent_mem+runtime_mem) Mem_sum

from

sql_summary

group by username

order by 2;

spool off

pause Press enter to continue

clear columns

clear breaks

set pages 22 lines 80

ttitle off
Figure 5: Example SQL Script To Report On SQL Area Usage By User

Example output from the script in Figure 5 is shown in Figure 6. In the example report no one user is really hogging the SQL area. If you have a particular user that is hogging SQL areas, the script in Figure 6 will show you what SQL areas they have and what is in them. This report on the actual SQL area contents can then be used to help teach the user how to better construct reusable SQL statements.

Date: 11/18/98 Page: 1

Time: 04:18 PM Users SQL Area Memory Use SYSTEM

 ORTEST1 database

 Shared Persistent Runtime Used Mem

User Bytes Bytes Bytes Areas Sum

--------------- ------------ ------------ ------------ --------- ------------

GRAPHICS_DBA 67,226 4,640 30,512 10 102,378

SYS 830,929 47,244 153,652 80 1,031,825

SYSTEM 2,364,314 37,848 526,228 63 2,928,390

 ------------ ------------ ------------ --------- ------------

sum 3,262,469 89,732 710,392 153 4,062,593

3 rows selected.

Figure 6: Example Output From Figure 5

In the example output we see that SYSTEM user holds the most SQL areas and our application DBA user, GRAPHICS_DBA holds the least. Since these reports where run on my small Oracle 8.0.5 database this is normal, however, usually the application owner will hold the largest section of memory in a well designed system, followed by ad-hoc users using properly designed SQL. In a situation where users aren't using properly designed SQL statements the ad-hoc users will usually have the largest number of SQL areas and show the most memory usage. Again, the script in Figure 7 shows the actual in memory SQL areas for a specific user. Figure 8 shows the example output from a report run against GRAPHICS_USER using the script in Figure 7.

rem

rem FUNCTION: Generate a report of SQL Area Memory Usage

rem showing SQL Text and memory catagories

rem

rem sqlmem.sql

rem

column sql_text format a60 heading Text word_wrapped

column sharable_mem heading Shared|Bytes

column persistent_mem heading Persistent|Bytes

column loads heading Loads

column users format a15 heading "User"

column executions

 heading "Executions"

column users_executing

 heading "Used By"

start title132 "Users SQL Area Memory Use"

spool rep_out\&db\sqlmem

set long 2000 pages 59 lines 132

break on users

compute sum of sharable_mem on users

compute sum of persistent_mem on users

compute sum of runtime_mem on users

select

username users, sql_text, Executions, loads, users_executing,

sharable_mem, persistent_mem

from

sys.v_$sqlarea a, dba_users b

where

a.parsing_user_id = b.user_id

and b.username like upper('%&user_name%')

order by 3 desc,1;

spool off

pause Press enter to continue

clear columns

clear computes

clear breaks

set pages 22 lines 80

Figure 7: Example Script To Show Active SQL Areas For a User

Date: 11/18/98 Page: 1

Time: 04:19 PM Users SQL Area Memory Use SYSTEM

 ORTEST1 database

 Shared Persistent

User Text Executions Loads Used By Bytes Bytes

-------------- -- ---------- ------ ------- ------ ----------

GRAPHICS_DBA BEGIN dbms_lob.read (:1, :2, :3, :4); END; 2121 1 0 10251 488

 alter session set nls_language= 'AMERICAN' nls_territory= 7 1 0 3975 408

 'AMERICA' nls_currency= '$' nls_iso_currency= 'AMERICA'

 nls_numeric_characters= '.,' nls_calENDar= 'GREGORIAN'

 nls_date_format= 'DD-MON-YY' nls_date_language= 'AMERICAN'

 nls_sort= 'BINARY'

 BEGIN :1 := dbms_lob.getLength (:2); END; 6 1 0 9290 448

 SELECT TO_CHAR(image_seq.nextval) FROM dual 6 1 0 6532 484

 SELECT graphic_blob FROM internal_graphics WHERE 2 1 0 5863 468

 graphic_id=10

 SELECT RPAD(TO_CHAR(graphic_id),5)||': 1 1 0 7101 472

 '||RPAD(graphic_desc,30)||' : '||RPAD(graphic_type,10) FROM

 internal_graphics ORDER BY graphic_id

 SELECT graphic_blob FROM internal_graphics WHERE 1 1 0 6099 468

 graphic_id=12

 SELECT graphic_blob FROM internal_graphics WHERE 1 1 0 6079 468

 graphic_id=32

 SELECT graphic_blob FROM internal_graphics WHERE 1 1 0 6074 468

 graphic_id=4

 SELECT graphic_blob FROM internal_graphics WHERE 1 1 0 5962 468

 graphic_id=8

*************** ------ ---------

sum 67226 4640

Figure 8: Report Output Example For a Users SQL Area

One warning about the script in figure 7, the report it generates can run to several hundred pages for a user with a large number of SQL areas. What things should you watch for in a user's SQL areas? First, watch for the non-use of bind variables, bind variable usage is shown by the inclusion of variables such as ":1" or ":B" in the SQL text. Notice that in the example report in Figure 8 the first four statements use bind variables, and, consequently are reusable. Non-bind usage means hard coded values such as 'Missing' or '10' are used. Notice that for most of the rest of the statements in the report no bind variables are used even though many of the SQL statements are nearly identical. This is one of the leading causes of shared pool misuse and results in useful SQL being drown in tons of non-reusable garbage SQL.

The problem with non-reusable SQL is that it must still be looked at by any new SQL inserted into the pool (actually it's hash value is scanned). While a hash value scan may seem a small cost item, if your shared pool contains tens of thousands of SQL areas this can be a performance bottleneck. How can we determine, without running the report in Figure 7 for each of possibly hundreds of users, if we have garbage SQL in the shared pool?

The script in Figure 9 shows a view that provides details on individual users SQL area reuse. The view can be tailored to your environment if the limit on reuse (currently set at 1) is too restrictive. For example, in a recent tuning assignment resetting the value to 12 resulting in nearly 70 percent of the SQL being rejected as garbage SQL, in DSS or data warehouse systems where rollups are performed by the month, bi-monthly or weekly values of 12, 24 or 52 might be advisable. Figure 10 shows a report script that uses the view created in Figure 9.

REM

REM View to sort SQL into GOOD and GARBAGE

REM

CREATE OR REPLACE VIEW sql_garbage AS

SELECT

 b.username users,

 SUM(a.sharable_mem+a.persistent_mem) Garbage,

 TO_NUMBER(null) good

FROM

 sys.v_$sqlarea a, dba_users b

WHERE

 (a.parsing_user_id = b.user_id and a.executions<=1)

GROUP BY b.username

UNION

SELECT DISTINCT

 b.username users,

 TO_NUMBER(null) garbage,

 SUM(c.sharable_mem+c.persistent_mem) Good

FROM

 dba_users b, sys.v_$sqlarea c

WHERE

 (b.user_id=c.parsing_user_id and c.executions>1)

GROUP BY b.username;

Figure 9: Example Script to Create the SQL_GARBAGE View

REM

REM Report on SQL Area Reuse by user

REM

column garbage

format 9,999,999,999 heading 'Non-Shared SQL'

column good

format 9,999,999,999 heading 'Shared SQL'

column good_percent
format 999.99
 heading 'Percent Shared'

set feedback off

break on report

compute sum of garbage on report

compute sum of good on report

compute avg of good_percent on report

@title80 'Shared Pool Utilization'

spool rep_out\&db\sql_garbage

select

a.users,

a.garbage,

b.good,

(b.good/(b.good+a.garbage))*100 good_percent

from

sql_garbage a, sql_garbage b

where

a.users=b.users

and

a.garbage is not null

and

b.good is not null

/

spool off

set feedback off

clear columns

clear breaks

clear computes

Figure 10: Example Report Script For SQL Reuse Statistics

The report script in Figure 10 shows at a glance (well, maybe a long glance for a system with hundreds of users) which users aren't making good use of reusable SQL. An example report output is shown in Figure 11.

Date: 11/18/98 Page: 1

Time: 04:16 PM Shared Pool Utilization SYSTEM

 ORTEST1 databas

USERS Non-Shared SQL Shared SQL Percent Shared

------------------------------ -------------- -------------- --------------

GRAPHICS_DBA 27,117 38,207 58.49

SYS 302,997 575,176 65.50

SYSTEM 1,504,740 635,861 29.70

 -------------- -------------- --------------

avg 51.23

sum 1,834,854 1,249,244
Figure 11: Example Report From Showing SQL Reuse Statistics

Notice in Figure 11 that the GRAPHICS_DBA user only shows 58.49% shared SQL use based on memory footprints. From the report in Figure 8 we would expect a low reuse value for GRAPHICS_DBA. The low reuse value for the SYSTEM user is due to its use as a monitoring user, the monitoring SQL is designed to be used once per day or so and was not built with reuse in mind.

Putting it All In Perspective

So what have we seen so far? We have examined reports that show both gross and detailed shared pool usage and whether or not shared areas are being reused. What can we do with this data? Ideally we will use the results to size our shared pool properly. Let's set out a few general guidelines for shared pool sizing:

Guideline 1: If gross usage of the shared pool in a non-ad-hoc environment exceeds 95% (rises to 95% or greater and stays there) establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and procedures. Increase shared pool by 20% increments until usage drops below 90% on the average.

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and establish a comfort level above this required level of pool fill. Establish a routine flush cycle to filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used establish a shared pool large enough to hold the fixed size portions plus a few megabytes (usually not more than 40) and allow the shared pool modified least recently used (LRU) algorithm to manage the pool.

In guidelines 1, 2 and 3, start at around 40 megabytes for a standard size system. Notice in guideline 2 it is stated that a routine flush cycle should be instituted. This flies in the face of what Oracle Support pushes in their shared pool white papers, however, they work from the assumption that proper SQL is being generated and you want to reuse the SQL present in the shared pool. In a mixed environment where there is a mixture of reusable and non-reusable SQL the non-reusable SQL will act as a drag against the other SQL (I call this shared pool thrashing) unless it is periodically removed by flushing. Figure 12 shows a PL/SQL package which can be used by the DBMS_JOB job queues to periodically flush the shared pool only when it exceeds a specified percent full.

PROCEDURE flush_it(p_free IN NUMBER) IS

--

CURSOR get_share IS

SELECT

SUM(a.bytes)

FROM

v$sgastat a

WHERE

a.name in (

'reserved stopper',

'table definiti',

'dictionary cache',

'library cache',

'sql area',

'PL/SQL DIANA',

'SEQ S.O.');

--

CURSOR get_var IS

 SELECT

value

 FROM

v$parameter

 WHERE

name = 'shared_pool_size';

--

CURSOR get_time IS

 SELECT

sysdate

 FROM

dual;

--

 todays_date
DATE;

 mem_ratio
NUMBER;

 share_mem
NUMBER;

 variable_mem
NUMBER;

 cur

INTEGER;

 sql_com
VARCHAR2(60);

 row_proc
NUMBER;

--

BEGIN

 OPEN get_share;

 OPEN get_var;

 FETCH get_share INTO share_mem;

 DBMS_OUTPUT.PUT_LINE('share_mem: '||to_char(share_mem));

 FETCH get_var INTO variable_mem;

 DBMS_OUTPUT.PUT_LINE('variable_mem: '||to_char(variable_mem));

 mem_ratio:=share_mem/variable_mem;

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(mem_ratio,'99.999')||' '||TO_CHAR(p_free/100,'99.999'));

 IF mem_ratio>p_free/100 THEN

 cur:=DBMS_SQL.OPEN_CURSOR;

 sql_com:='ALTER SYSTEM FLUSH SHARED_POOL';

 DBMS_SQL.PARSE(cur,sql_com,dbms_sql.v7);

 row_proc:=DBMS_SQL.EXECUTE(cur);

 DBMS_SQL.CLOSE_CURSOR(cur);

 OPEN get_time;

 FETCH get_time INTO todays_date;

 INSERT INTO dba_running_stats VALUES ('Flush of Shared Pool',mem_ratio,35,todays_date,0);

 COMMIT;

 END IF;

END flush_it;

Figure 12: Example Script to Run a Shared Pool Flush Routine

The command set to perform a flush on a once every 30 minute cycle when the pool reaches 95% full would be:

VARIABLE x NUMBER;

BEGIN

dbms_job.submit(

:X,'BEGIN dbms_revealnet.flush_it(95); END;',SYSDATE,'SYSDATE+(30/1440)’);

END;

/

COMMIT;

(Always commit after assigning a job or the job will not be run and queued)

There is always a discussion as to whether this really does help performance so I set up a test on a production instance where on day 1 I did no automated flushing and on day 2 I instituted the automated flushing. Figure 13 shows the graphs of performance indicators, flush cycles and users.

[image: image2.wmf]Performance Indicator

0

100

200

300

400

500

600

Measurement

Measurement

1/100 Sec

Day2

Day 1

[image: image3.wmf]Meg - Shared SQL

0

20

40

60

80

100

120

Measurement

Measurement

Meg

Day 2

Day 1

[image: image4.wmf]Number Of Users

0

50

100

150

200

250

Measurement

Measurement

Number

Day 2

Day 1

Figure 13: Graphs Showing Effects of Flushing

The thing to notice about the graphs in Figure 13 is the overall trend of the performance indicator between day 1 and day 2. On day 1 (the day with an initial flush as indicated by the steep plunge on the pool utilization graph followed by the buildup to maximum and the flattening of the graph) the performance indicator shows an upward trend. The performance indicator is a measure of how long the database takes to do a specific set of tasks (from the Q Diagnostic tool from Savant Corporation). Therefore an increase in the performance indicator indicates a net decrease in performance. On day 2 the overall trend is downward with the average value less than the average value from day 1. Overall the flushing improved the performance as indicated by the performance indicator by 10 to 20 percent. Depending on the environment I have seen improvements of up to 40-50 percent.

One thing that made the analysis difficult was that on day 2 there were several large batch jobs run which weren’t run on day 1. The results still show that flushing has a positive effect on performance when the database is a mixed SQL environment with a large percentage of non-reusable SQL areas.

Guideline 3 also brings up an interesting point, you may already have over allocated the shared pool, in this case guideline 3 may result in you decreasing the size of the shared pool. In this situation the shared pool has become a cesspool filled with nothing but garbage SQL. After allocating enough memory for dictionary objects and other fixed areas and ensuring that the standard packages and such are pinned, you should only maintain a few megabytes above and beyond this level of memory for SQL statements. Since none of the code is being reused you want to reduce the hash search overhead as much as possible, you do this by reducing the size of the available SQL area memory so as few a number of statements are kept as possible.

Summary

We have covered a lot of territory in the first half of this article. I hope you now understand that the old "just increase the shared pool" answer isn't good enough anymore when it comes to tuning problems. You must take an in depth look at your shared pool and tune what needs to be tuned, not just throw memory at a problem until it submerges. Indeed, I have shown that in some cases increasing the size of the shared pool may harm performance and decreasing the size may be advisable. I have also presented three general guidelines for shared pool tuning. The shared pool is vital to the proper performance of your Oracle database, you must have it properly tuned or drown in bad performance. Next month we will continue with part two of this article, where we will cover what to pin, the shared pool and multi-threaded server, hashing and generalized library and dictionary cache tuning.

Possible Side Bar:

Initialization Parameters That Effect The Shared Pool

NAME DESCRIPTION

------------------------------ --

shared_pool_size size in bytes of shared pool (7 and 8)

shared_pool_reserved_size size in bytes of reserved area of shared

 pool (7 and 8)

shared_pool_reserved_min_alloc minimum allocation size in bytes for

 reserved area of shared pool (7 and 8)

large_pool_size size in bytes of the large allocation

 pool (8 only)

large_pool_min_alloc minimum allocation size in bytes for the

 large allocation pool (8 only)

parallel_min_message_pool minimum size of shared pool memory to

 reserve for pq servers (8 only)

backup_io_slaves Number of backup IO slaves to configure

 (8 only)

temporary_table_locks Number of temporary table locks to

 configure (7 and 8)

dml_locks Number of DML locks to configure (7 and

 8)

sequence_cache_entries Number of sequence numbers to cache (7

 and 8)

row_cache_cursors Number of row caches to set up (7 and 8)

max_enabled_roles Number of role caches to set up (7 and

 8)

mts_dispatchers Number of MTS dispatcher processes to

 start with (7 and 8)

mts_max_dispatchers Maximum number of dispatcher processes

 to allow (7 and 8)

mts_servers Number of MTS servers to start with (7

 and 8)

mts_max_servers Maximum number of MTS servers to allow

 (7 and 8)

open_cursors Maximum number of open cursors per

 session (7 and 8)

cursor_space_for_time Hold open cursors until process exits (7

 and 8)

Views Mentioned in Article:

View Name

Purpose

----------------- ---

V$PARAMETER

Contains current settings for all documented

 initialization parameters

V$SGASTAT

Contains sizing information for all SGA areas

V$SQLAREA

Contains information and statistics on the SQL

 area of the shared pool

V$DB_OBJECT_CACHE

Contains information on all cached objects in

 the database shared pool area

V$LIBRARYCACHE

Contains statistics on the library caches

V$ROWCACHE

Contains statistics on the data dictionary

 caches

DBA_USERS

Contains database user information

Software mentioned in article:

Software

 Manufacturer

Purpose

-------------------- --------------------

Oracle Administrator RevealNet, Inc.
Administration Knowledge base

Q Diagnostic
 Savant, Corp.

Provide Oracle DB diagnostics

� EMBED Visio.Drawing.4 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

[image: image5.wmf]PL/SQL

Procedures

Shared

SQL Area

Control

Structures

(Latches/Locks)

Library Caches

Dictionary

Caches

Control Structures

Char Set

Shared Pool

Request and

Response Queues

Used with MTS

Oracel 7 Shared Pool

PL/SQL

Procedures

Shared

SQL Area

Control

Structures

(Latches/Locks)

Library Caches

Dictionary

Caches

Control Structures

Char Set

Shared Pool

Request and

Response Queues

Used with MTS

IO Slaves

B/U--Restore

Large Pool

Oracle 8 Shared Pool

[image: image6.wmf]Performance Indicator

0

100

200

300

400

500

600

Measurement

Measurement

1/100 Sec

Day2

Day 1

[image: image7.wmf]Meg - Shared SQL

0

20

40

60

80

100

120

Measurement

Measurement

Meg

Day 2

Day 1

[image: image8.wmf]Number Of Users

0

50

100

150

200

250

Measurement

Measurement

Number

Day 2

Day 1

_972978317.xls
Chart4

		Measurement		Measurement

		436		356

		564		324

		553		336

		354		330

		360		340

		369		337

		385		337

		378		338

		360		363

		406		378

		412		369

		435		355

		421		356

		432		353

		416		373

		358		360

		367		365

		366		361

		349		355

		350		378

		347		362

		355		376

		352		368

		487		360

		361		364

		338		370

		346		357

		348		365

		354		355

		377		353

		358		367

		354		360

		352		350

		360		407

		366		372

		356		385

		364		357

		360		361

		360		375

		347		361

		348		373

		338		439

		341		351

		349		352

		339		367

		358		405

		350		409

		344		391

		360		368

		361		387

		337		373

		332		376

		327		341

Day2

Day 1

Measurement

1/100 Sec

Performance Indicator

415

319

Sheet1

		Perf Ind		Shared Pool		Num Users		% Reused		Perf Ind		Shared Pool		Num Users		% Reused

		415		43		45		42.42		319		72		31		43.89

		436		45		62		42.42		356		75		51		44.04

		564		49		87		45.84		324		78		71		44.04

		553		57		108		46.42		336		82		97		43.33

		354		62		121		50.7		330		86		122		41.85

		360		67		133		50.7		340		6.8		138		41.85

		369		73		138		51.97		337		14		146		50.05

		385		8.7		150		51.97		337		20		151		46.41

		378		14		154		65.52		338		26		152		49.75

		360		19		172		59.22		363		30		155		49.75

		406		25		170		57.68		378		62		161		48

		412		31		176		57.68		369		67		167		48.91

		435		37		176		53.06		355		71		171		48.91

		421		43		181		52.5		356		76		175		48.82

		432		50		185		52.5		353		82		177		48.42

		416		56		186		49.73		373		87		179		48.42

		358		59		189		50.88		360		91		183		51.59

		367		66		192		50.88		365		97		188		52.57

		366		71		191		46.95		361		100		187		55.41

		349		76		189		46.27		355		99		191		55.41

		350		83		190		46.27		378		99		199		56.6

		347		90		193		45.65		362		98		197		56.6

		355		96		192		46.14		376		97		194		54.98

		352		96		189		49.77		368		97		195		54.24

		487		1		190		49.77		360		96		192		54.24

		361		12		193		58.81		364		95		191		54.41

		338		16		188		58.81		370		94		192		56.83

		346		19		188		55.38		357		94		189		56.95

		348		22		191		55.65		365		94		189		56.95

		354		25		191		59.04		355		93		188		57.72

		377		28		194		59.04		353		93		186		60.87

		358		32		196		57.68		367		92		185		60.87

		354		37		198		59.33		360		92		187		63

		352		41		197		59.33		350		91		187		55.42

		360		44		196		60.79		407		91		200		55.42

		366		47		196		61.63		372		90		206		56.03

		356		50		200		61.63		385		91		194		60.44

		364		53		198		61.62		357		90		195		60.44

		360		59		198		54.25		361		90		198		63.94

		360		67		197		54.25		375		90		202		59.46

		347		73		195		54.73		361		90		202		61.13

		348		78		192		55.22		373		8.5		202		61.13

		338		5.8		192		55.22		439		15		208		52.53

		341		14		191		65.97		351		23		198		48.83

		349		19		193		67.57		352		28		200		48.83

		339		23		192		67.57		367		33		203		59.37

		358		28		194		66.76		405		41		203		59.37

		350		34		190		59.17		409		44		204		53.71

		344		40		190		59.17		391		50		198		53.71

		360		43		186		59.08		368		55		197		53.98

		361		45		183		58.74		387		58		195		56

		337		49		182		57.31		373		61		200		56

		332		51		175		57.31		376		66		180		58.81

		327		54		143		58.62		341		70		127		58.71

		374.2962962963		44.9351851852		175.5185185185		55.2331481481		363.7037037037		70.95		175.4814814815		53.6840740741

Sheet1

		Measurement		Measurement

Day2

Day 1

Measurement

1/100 Sec

Performance Indicator

Sheet2

		Measurement		Measurement

Day 2

Day 1

Measurement

Meg

Meg - Shared SQL

Sheet3

		Measurement		Measurement

Day 2

Day 1

Measurement

Number

Number Of Users

		Measurement		Measurement

Day 2

Day 1

Measurement

Percent

Percent Reused SQL

		

		

_972978330.xls
Chart5

		Measurement		Measurement

		45		75

		49		78

		57		82

		62		86

		67		6.8

		73		14

		8.7		20

		14		26

		19		30

		25		62

		31		67

		37		71

		43		76

		50		82

		56		87

		59		91

		66		97

		71		100

		76		99

		83		99

		90		98

		96		97

		96		97

		1		96

		12		95

		16		94

		19		94

		22		94

		25		93

		28		93

		32		92

		37		92

		41		91

		44		91

		47		90

		50		91

		53		90

		59		90

		67		90

		73		90

		78		8.5

		5.8		15

		14		23

		19		28

		23		33

		28		41

		34		44

		40		50

		43		55

		45		58

		49		61

		51		66

		54		70

Day 2

Day 1

Measurement

Meg

Meg - Shared SQL

43

72

Sheet1

		Perf Ind		Shared Pool		Num Users		% Reused		Perf Ind		Shared Pool		Num Users		% Reused

		415		43		45		42.42		319		72		31		43.89

		436		45		62		42.42		356		75		51		44.04

		564		49		87		45.84		324		78		71		44.04

		553		57		108		46.42		336		82		97		43.33

		354		62		121		50.7		330		86		122		41.85

		360		67		133		50.7		340		6.8		138		41.85

		369		73		138		51.97		337		14		146		50.05

		385		8.7		150		51.97		337		20		151		46.41

		378		14		154		65.52		338		26		152		49.75

		360		19		172		59.22		363		30		155		49.75

		406		25		170		57.68		378		62		161		48

		412		31		176		57.68		369		67		167		48.91

		435		37		176		53.06		355		71		171		48.91

		421		43		181		52.5		356		76		175		48.82

		432		50		185		52.5		353		82		177		48.42

		416		56		186		49.73		373		87		179		48.42

		358		59		189		50.88		360		91		183		51.59

		367		66		192		50.88		365		97		188		52.57

		366		71		191		46.95		361		100		187		55.41

		349		76		189		46.27		355		99		191		55.41

		350		83		190		46.27		378		99		199		56.6

		347		90		193		45.65		362		98		197		56.6

		355		96		192		46.14		376		97		194		54.98

		352		96		189		49.77		368		97		195		54.24

		487		1		190		49.77		360		96		192		54.24

		361		12		193		58.81		364		95		191		54.41

		338		16		188		58.81		370		94		192		56.83

		346		19		188		55.38		357		94		189		56.95

		348		22		191		55.65		365		94		189		56.95

		354		25		191		59.04		355		93		188		57.72

		377		28		194		59.04		353		93		186		60.87

		358		32		196		57.68		367		92		185		60.87

		354		37		198		59.33		360		92		187		63

		352		41		197		59.33		350		91		187		55.42

		360		44		196		60.79		407		91		200		55.42

		366		47		196		61.63		372		90		206		56.03

		356		50		200		61.63		385		91		194		60.44

		364		53		198		61.62		357		90		195		60.44

		360		59		198		54.25		361		90		198		63.94

		360		67		197		54.25		375		90		202		59.46

		347		73		195		54.73		361		90		202		61.13

		348		78		192		55.22		373		8.5		202		61.13

		338		5.8		192		55.22		439		15		208		52.53

		341		14		191		65.97		351		23		198		48.83

		349		19		193		67.57		352		28		200		48.83

		339		23		192		67.57		367		33		203		59.37

		358		28		194		66.76		405		41		203		59.37

		350		34		190		59.17		409		44		204		53.71

		344		40		190		59.17		391		50		198		53.71

		360		43		186		59.08		368		55		197		53.98

		361		45		183		58.74		387		58		195		56

		337		49		182		57.31		373		61		200		56

		332		51		175		57.31		376		66		180		58.81

		327		54		143		58.62		341		70		127		58.71

		374.2962962963		44.9351851852		175.5185185185		55.2331481481		363.7037037037		70.95		175.4814814815		53.6840740741

Sheet1

		Measurement		Measurement

Day2

Day 1

Measurement

1/100 Sec

Performance Indicator

Sheet2

		Measurement		Measurement

Day 2

Day 1

Measurement

Meg

Meg - Shared SQL

Sheet3

		Measurement		Measurement

Day 2

Day 1

Measurement

Number

Number Of Users

		Measurement		Measurement

Day 2

Day 1

Measurement

Percent

Percent Reused SQL

		

		

_972978376.xls
Chart6

		Measurement		Measurement

		62		51

		87		71

		108		97

		121		122

		133		138

		138		146

		150		151

		154		152

		172		155

		170		161

		176		167

		176		171

		181		175

		185		177

		186		179

		189		183

		192		188

		191		187

		189		191

		190		199

		193		197

		192		194

		189		195

		190		192

		193		191

		188		192

		188		189

		191		189

		191		188

		194		186

		196		185

		198		187

		197		187

		196		200

		196		206

		200		194

		198		195

		198		198

		197		202

		195		202

		192		202

		192		208

		191		198

		193		200

		192		203

		194		203

		190		204

		190		198

		186		197

		183		195

		182		200

		175		180

		143		127

Day 2

Day 1

Measurement

Number

Number Of Users

45

31

Sheet1

		Perf Ind		Shared Pool		Num Users		% Reused		Perf Ind		Shared Pool		Num Users		% Reused

		415		43		45		42.42		319		72		31		43.89

		436		45		62		42.42		356		75		51		44.04

		564		49		87		45.84		324		78		71		44.04

		553		57		108		46.42		336		82		97		43.33

		354		62		121		50.7		330		86		122		41.85

		360		67		133		50.7		340		6.8		138		41.85

		369		73		138		51.97		337		14		146		50.05

		385		8.7		150		51.97		337		20		151		46.41

		378		14		154		65.52		338		26		152		49.75

		360		19		172		59.22		363		30		155		49.75

		406		25		170		57.68		378		62		161		48

		412		31		176		57.68		369		67		167		48.91

		435		37		176		53.06		355		71		171		48.91

		421		43		181		52.5		356		76		175		48.82

		432		50		185		52.5		353		82		177		48.42

		416		56		186		49.73		373		87		179		48.42

		358		59		189		50.88		360		91		183		51.59

		367		66		192		50.88		365		97		188		52.57

		366		71		191		46.95		361		100		187		55.41

		349		76		189		46.27		355		99		191		55.41

		350		83		190		46.27		378		99		199		56.6

		347		90		193		45.65		362		98		197		56.6

		355		96		192		46.14		376		97		194		54.98

		352		96		189		49.77		368		97		195		54.24

		487		1		190		49.77		360		96		192		54.24

		361		12		193		58.81		364		95		191		54.41

		338		16		188		58.81		370		94		192		56.83

		346		19		188		55.38		357		94		189		56.95

		348		22		191		55.65		365		94		189		56.95

		354		25		191		59.04		355		93		188		57.72

		377		28		194		59.04		353		93		186		60.87

		358		32		196		57.68		367		92		185		60.87

		354		37		198		59.33		360		92		187		63

		352		41		197		59.33		350		91		187		55.42

		360		44		196		60.79		407		91		200		55.42

		366		47		196		61.63		372		90		206		56.03

		356		50		200		61.63		385		91		194		60.44

		364		53		198		61.62		357		90		195		60.44

		360		59		198		54.25		361		90		198		63.94

		360		67		197		54.25		375		90		202		59.46

		347		73		195		54.73		361		90		202		61.13

		348		78		192		55.22		373		8.5		202		61.13

		338		5.8		192		55.22		439		15		208		52.53

		341		14		191		65.97		351		23		198		48.83

		349		19		193		67.57		352		28		200		48.83

		339		23		192		67.57		367		33		203		59.37

		358		28		194		66.76		405		41		203		59.37

		350		34		190		59.17		409		44		204		53.71

		344		40		190		59.17		391		50		198		53.71

		360		43		186		59.08		368		55		197		53.98

		361		45		183		58.74		387		58		195		56

		337		49		182		57.31		373		61		200		56

		332		51		175		57.31		376		66		180		58.81

		327		54		143		58.62		341		70		127		58.71

		374.2962962963		44.9351851852		175.5185185185		55.2331481481		363.7037037037		70.95		175.4814814815		53.6840740741

Sheet1

		Measurement		Measurement

Day2

Day 1

Measurement

1/100 Sec

Performance Indicator

Sheet2

		Measurement		Measurement

Day 2

Day 1

Measurement

Meg

Meg - Shared SQL

Sheet3

		Measurement		Measurement

Day 2

Day 1

Measurement

Number

Number Of Users

		Measurement		Measurement

Day 2

Day 1

Measurement

Percent

Percent Reused SQL

		

		

_972883057.vsd

