Diving Into The Shared Pool – An In Depth Look At Tuning The Shared Pool (Part 2)

Last month in part one of this article we discussed what exactly the shared pool is, monitoring and tuning the SQL areas of the shared pool and when should the shared pool be flushed. In addition I presented three initial general guidelines for tuning the shared pool:

Guideline 1: If gross usage of the shared pool in a non-ad-hoc environment exceeds 95% (rises to 95% or greater and stays there) establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and procedures and then increase shared pool by 20% increments until usage drops below 90% on the average.

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and establish a comfort level above this required level of pool fill, then establish a routine flush cycle to filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used establish a shared pool large enough to hold the fixed size portions plus a few megabytes (usually not more than 40) and allow the shared pool modified least recently used (LRU) algorithm to manage the pool.

Let us continue this month furthering the discussion of what to pin and look at other areas of shared pool tuning such as multi-threaded server, hashing and the generalized tuning of the library and data dictionary cache areas.

What to Pin

In all of the guidelines stated so far I mention that the memory is usually allocated above and beyond that needed for fixed size areas and pinned objects. How do you determine what to pin? Generally speaking any package, procedure, function or cursor that is frequently used by your application should be pinned into the shared pool when the database is started. I suggest adding a “null” startup function to every in house generated package it essentially looks like Figure 1.

FUNCTION start_up

RETURN number IS

Ret NUMBER:=1;

BEGIN

Ret:=0

RETURN ret;

END start_up;

Figure 1: Example Null Startup Function

The purpose of the null startup function is to provide a touch point to pull the entire package into the shared pool. This allows you to create a startup SQL procedure that pulls all of the application packages into the pool and pins them using the DBMS_SHARED_POOL package. The DBMS_SHARED_POOL package may have to be built in earlier releases of Oracle. The DBMS_SHARED_POOL package is built using the DBMSPOOL.SQL and PRVTPOOL.PLB scripts located in (UNIX) $ORACLE_HOME/rdbms/admin or (NT) x:\orant\rdbms\admin (where x: is the home drive for your install).

How do you determine what packages, procedures of functions to pin? Actually, Oracle has made this easy by providing the V$DB_OBJECT_CACHE view that shows all objects in the pool, and, more importantly, how they are being utilized. The script in Figure 2 provides a list of objects that have been loaded more than once and have executions greater than one. Some example output from this script is shown in figure 16. A rule of thumb is that if an object is being frequently executed and frequently reloaded it should be pinned into the shared pool.

rem

rem FUNCTION: Report Stored Object Statistics

rem

column owner

format a11

heading Schema

column name

format a30

heading Object|Name

column namespace

heading Name|Space

column type

heading Object|Type

column kept

format a4

heading Kept

column sharable_mem
format 999,999
heading Shared|Memory

column executions
format 999,999
heading Executes

set lines 132 pages 47 feedback off

@title132 'Oracle Objects Report'

break on owner on namespace on type

spool rep_out/&db/o_stat

select

OWNER,

NAMESPACE,

TYPE,

NAME,

SHARABLE_MEM,

LOADS,

EXECUTIONS,

LOCKS,

PINS,

KEPT

from

v$db_object_cache

where

type not in (

'NOT LOADED','NON-EXISTENT','VIEW','TABLE','SEQUENCE')

and executions>0 and loads>1 and kept='NO'

order by owner,namespace,type,executions desc;

spool off

set lines 80 pages 22 feedback on

clear columns

clear breaks

ttitle off

Figure 2: Script to Show Objects Which Should Be Kept

The output from the script in Figure 2 is shown in Figure 3. Notice the objects with high executions.

Date: 11/20/98 Page: 1

Time: 09:59 AM Oracle Objects Report AULTM

 AGCD database

 Name Object Object Shared

Schema Space Type Name Memory LOADS Executes LOCKS PINS Kept

------ --------------- -------------- ---------------------------- -------- --------- -------- --------- --------- ----

SYS BODY PACKAGE BODY DBMS_EXPORT_EXTENSION 6,957 1 1,338 1 0 NO

 DBMS_SQL 11,016 1 50 1 0 NO

 DBMS_SYS_SQL 21,428 1 50 1 0 NO

 DBMS_DEFER_IMPORT_INTERNAL 4,070 1 50 1 0 NO

 STANDARD 26,796 1 50 1 0 NO

 DBMS_APPLICATION_INFO 4,585 1 8 1 0 NO

 DBMS_OUTPUT 8,799 1 1 1 0 NO

 TABLE/PROCEDURE PACKAGE DBMS_EXPORT_EXTENSION 12,269 1 1,355 1 0 NO

 DBMS_DEFER_IMPORT_INTERNAL 10,662 1 51 1 0 NO

 DBMS_SQL 6,960 1 50 1 0 NO

 STANDARD 118,556 1 50 1 0 NO

 DBMS_SYS_SQL 7,472 1 50 1 0 NO

 DBMS_APPLICATION_INFO 11,569 1 9 1 0 NO

 DBMS_OUTPUT 13,391 1 1 1 0 NO

Figure 3: Example Output From the Script In Figure 2.

Unfortunately in my active instance I already have the objects pinned that are required, but the example report in Figure 3 taken from one of my less active instances still shows the concept. Note that you only have to pin the package, not the package and package body.

Guideline 4: Determine usage patterns of packages, procedures, functions and cursors and pin those that are frequently used.

The Shared Pool and MTS

The use of the multi-threaded server option (MTS) in Oracle requires a sometimes dramatic increase in the size of the shared pool. This increase in the size of the shared pool caused by MTS is due to the addition of the user global areas required for sorting and message queues. If you are using MTS you should monitor the V$SGASTAT values for MTS related memory areas and adjust the shared pool memory allocations accordingly.

Note that in Oracle 8 you should make use of the large pool feature to pull the user global areas (UGA) and multi-threaded server queues out of the shared pool area if MTS is being used. This prevents the fragmentation problems which have been reported in shared pools when MTS is used without allocating the large pool.

Guideline 5: In Oracle7when using MTS increase the shared pool size to accommodate MTS messaging and queuing as well as UGA requirements. In Oracle8 use the Large Pool to prevent MTS from effecting the shared pool areas.

A Matter Of Hashing

We have discussed hashing in prior sections, essentially each SQL statement is hashed and this hash value is then used to compare to already stored SQL areas, if a matching hash is found the statements are compared. The hash is only calculated based on the first 200 or so characters in the SQL statement, so extremely long SQL statements can result in multiple hashes being the same even though the stored SQL is different (if the first 100 or so characters in each statement are identical). This is another argument for using stored procedures and functions to perform operations and for the use of bind variables. There is hope, in 8i (or 8.1 if you prefer) the hash value will be calculated on the first 100 and last 100 characters reducing the chances of multiple identical hash values for different SQL statements.

If the number of large, nearly identical statements is high, then the number of times the parser has to compare a new SQL statement to existing SQL statements with the same hash value increases. This results in a higher statement overhead and poorer performance. You should identify these large statements and encourage users to re-write them using bind variables or to proceduralize them using PL/SQL. The report in Figure 4 will show if you have a problem with multiple statements being hashed to the same value.

Rem:

rem: FUNCTION: Shows by user who has possible

rem: SQL reuse problems

rem:

column total_hash

heading 'Total Hash|Values'

column same_hash

heading 'SQL With|Same Hash'

column u_hash_ratio
format 999.999
heading 'SQL Sharing|Hash'

start title80 'Shared Hash Value Report'

spool rep_out\&&db\shared_hash.lst

break on report

compute sum of total_hash on report

compute sum of same_hash on report

select

a.username,

count(b.hash_value) total_hash,

count(b.hash_value)-count(unique(b.hash_value)) same_hash,

(count(unique(b.hash_value))/count(b.hash_value))*100 u_hash_ratio

from

dba_users a,

v$sqlarea b

where

a.user_id=b.parsing_user_id

group by

a.username;

clear computes

Figure 4: Example Script to Report on Hashing Problems

The script in Figure 4 produces a report similar to that shown in Figure 5. The report in Figure 5 shows which users are generating SQL that hashes to the same values. Once you have a user isolated you can then run the script in figure 7 to find the bad SQL statements.

Date: 11/20/98 Page: 1

Time: 11:40 AM Shared Hash Value Report AULTM

 DCARS database

 Total Hash SQL With SQL Sharing

USERNAME Values Same Hash Hash

------------------------------ ---------- --------- -----------

AULTM 129 0 100.000

DCARS 6484 58 99.105

MCNAIRT 20 0 100.000

PASSMAP 2 0 100.000

QDBA 109 0 100.000

RCAPS 270 0 100.000

RCOM 342 7 97.953

REPORTS1 28 0 100.000

SECURITY_ADMIN 46 0 100.000

SYS 134 0 100.000

 ---------- ---------

sum 7564 65

Figure 5: Hash Report

A quick glance at the report in Figure 5 shows that I need to look at the DCARS user to correct hashing problems they might be having and improve the reuse of SQL in the shared pool. However, look at the number of hash areas this user has accumulated, 6,484, if I run the report from figure 7 in last months article it will out weigh the paper version of the Oracle documentation set. A faster way to find the hash values would be to do a self join and filter out the hash values that are duplicate. Sounds easy enough, but remember, the V$ tables have no rowids so you can’t use the classic methods, you have to find another column that will be different when the HASH_VALUE column in V$SQLAREA is the same. Look at the select in Figure 6.

select distinct a.hash_value from v$sqlarea a, v$sqlarea b, dba_users c

where a.hash_value=b.hash_value and

a.parsing_user_id = c.user_id

and c.username='DCARS' and (change to user you are concerned about
a.FIRST_LOAD_TIME != b.FIRST_LOAD_TIME

Figure 6: Example Select To Determine Duplicate Hash Values

Figure 7 has an example output from the above select.

DCARS:column hash_value format 99999999999

DCARS:set echo on

DCARS: select distinct a.hash_value from v$sqlarea a, v$sqlarea b,

 2 dba_users c

 3 where a.hash_value=b.hash_value and

 4 a.parsing_user_id = c.user_id

 5 and c.username='DCARS' and

 6* a.FIRST_LOAD_TIME != b.FIRST_LOAD_TIME

 HASH_VALUE

 -1595172473

 -1478772040

 -1344554312

 -941902153

 -807684425

 -507978165

 -270812489

 441376718

 784076104

 979296206

 1765990350

 1945885214

Figure 7: Example Hash Select Output

Once you have the hash value you can pull the problem SQL statements from either V$SQLAREA or V$SQLTEXT very easily, look at Figure 8.

DCARS:select sql_text from v$sqlarea where hash_value='441376718';

SQL_TEXT

SELECT region_code, region_dealer_num, consolidated_dealer_num,

dealer_name, dealer_status_code, dealer_type_code, mach_credit_code,

parts_credit_code FROM dealer WHERE region_code = '32' AND region_dealer_num = '6433'

SELECT region_code, region_dealer_num, consolidated_dealer_num,

dealer_name, dealer_status_code, dealer_type_code, mach_credit_code,

parts_credit_code FROM dealer WHERE region_code = '56' AND region_dealer_num = '6273'

Figure 8: Example of Statements With Identical Hash Values But Different SQL

Long statements require special care to see that bind variables are used to prevent this problem with hashing. Another help for long statements is to use views to store values at an intermediate state thus reducing the size of the variable portion of the SQL. Notice in the example select in Figure 8 that the only difference between the two identically hashed statements is that the “region_code” and “region_dealer_num” comparison values are different, if bind variables had been used in these statements there would only have been one entry instead of two.

Guideline 6: Use bind variables, PL/SQL (procedures or functions) and views to reduce the size of large SQL statements to prevent hashing problems.

Monitoring Library and Data Dictionary Caches

I've spent most of this article looking at the shared SQL area of the shared pool. Let's wrap up with a high level look at the library and data dictionary caches. The library cache area is monitored via the V$LIBRARYCACHE view and contains the SQL area, PL/SQL area, table, index and cluster cache areas. The data dictionary caches contain cache area for all data dictionary related definitions.

The script in Figure 9 creates a report on the library caches. The items of particular interest in the report generated by the script in Figure 9 (shown in Figure 10) are the various ratios.

rem

rem Title: libcache.sql

rem

rem FUNCTION: Generate a library cache report

rem

column namespace heading "Library Object"

column gets format 9,999,999 heading "Gets"

column gethitratio format 999.99 heading "Get Hit%"

column pins format 9,999,999 heading "Pins"

column pinhitratio format 999.99 heading "Pin Hit%"

column reloads format 99,999 heading "Reloads"

column invalidations format 99,999 heading "Invalid"

column db format a10

set pages 58 lines 80

start title80 "Library Caches Report"

define output = rep_out\&db\lib_cache

spool &output

select

namespace,

gets,

gethitratio*100 gethitratio,

pins,

pinhitratio*100 pinhitratio,

RELOADS,

INVALIDATIONS

from

v$librarycache

/

spool off

pause Press enter to continue

set pages 22 lines 80

ttitle off

undef output

Figure 9: Example Script To Monitor The Library Caches

Look at the example output from the script in Figure 9 in Figure 10. In Figure 10 we see that all Get Hit% (gethitratio in the view) except for indexes are greater than 80-90 percent. This is the desired state, the value for indexes is low because of the few accesses of that type of object. Notice that the Pin Hit% is also greater than 90% (except for indexes) this is also to be desired. The other goals of tuning this area are to reduce reloads to as small a value as possible (this is done by proper sizing and pinning) and to reduce invalidations. Invalidations happen when for one reason or another an object becomes unusable. However, if you must use flushing of the shared pool reloads and invalidations may occur as objects are swapped in and out of the shared pool. Proper pinning can reduce the number of objects reloaded and invalidated.

Guideline 7: In a system where there is no flushing increase the shared pool size in 20% increments to reduce reloads and invalidations and increase hit ratios.

Date: 11/21/98 Page: 1

Time: 02:51 PM Library Caches Report SYSTEM

 ORTEST1 database

Library Object Gets Get Hit% Pins Pin Hit% Reloads Invalid

--------------- ---------- -------- ---------- -------- ------- -------

SQL AREA 46,044 99.17 99,139 99.36 24 16

TABLE/PROCEDURE 1,824 84.59 6,935 93.21 3 0

BODY 166 93.98 171 91.23 0 0

TRIGGER 0 100.00 0 100.00 0 0

INDEX 27 .00 27 .00 0 0

CLUSTER 373 98.12 373 97.59 0 0

OBJECT 0 100.00 0 100.00 0 0

PIPE 0 100.00 0 100.00 0 0

Figure 10: Example Of The Output From Library Caches Report

The data dictionary caches used to be individually tunable through several initialization parameters, now they are internally controlled. The script in Figure 11 should be used to monitor the overall hit ratio for the data dictionary caches.

rem

rem title: ddcache.sql

rem FUNCTION: report on the v$rowcache table

rem HISTORY: created sept 1995 MRA

rem

start title80 "DD Cache Hit Ratio"

spool rep_out\&db\ddcache

SELECT (SUM(getmisses)/SUM(gets)) RATIO

FROM V$ROWCACHE

/

spool off

pause Press enter to continue

ttitle off

Figure 11: Script to Monitor the Data Dictionary Caches

The output from the script in Figure 11 is shown in Figure 12.

Date: 11/21/98 Page: 1

Time: 02:59 PM DD Cache Hit Ratio SYSTEM

 ORTEST1 database

 RATIO

.01273172

Figure 12: Example Output From Data Dictionary Script

The ratio reported from the script in Figure 11 should always be less than 1. The ratio corresponds to the number of times out of 100 that the database engine sought something from the cache and missed. A dictionary cache miss is more expensive than a data block buffer miss so if your ratio gets near 1 increase the size of the shared pool since the internal algorithm isn't allocating enough memory to the data dictionary caches.

Guideline 8: In any shared pool, if the overall data dictionary cache miss ratio exceeds 1 percent, increase the size of the shared pool.

In Summary

In this final installment of the shared pool tuning article we have discussed ways to monitor for what objects should be pinned, discussed multi-threaded server , looked at hashing problems and their resolution as well as examined classic library and data dictionary cache tuning. Including the guidelines from last months article we have established 8 guidelines for tuning the Oracle shared pool:

Guideline 1: If gross usage of the shared pool in a non-ad-hoc environment exceeds 95% (rises to 95% or greater and stays there) establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and procedures. Gradually increase shared pool by 20% increments until usage drops below 90% on the average.

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment, establish a shared pool size large enough to hold the fixed size portions, pin reusable packages and establish a comfort level above this required level of pool fill. Establish a routine flush cycle to filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used establish a shared pool large enough to hold the fixed size portions plus a few megabytes (usually not more than 40) and allow the shared pool modified least recently used (LRU) algorithm to manage the pool. (also see guideline 8)

Guideline 4: Determine usage patterns of packages, procedures, functions and cursors and pin those that are frequently used.

Guideline 5: In Oracle7when using MTS increase the shared pool size to accommodate MTS messaging and queuing as well as UGA requirements. In Oracle8 use the Large Pool to prevent MTS from effecting the shared pool areas.

Guideline 6: Use bind variables, PL/SQL (procedures or functions) and views to reduce the size of large SQL statements to prevent hashing problems.

Guideline 7: In a system where there is no flushing increase the shared pool size in 20% increments to reduce reloads and invalidations and increase object cache hit ratios.

Guideline 8: In any shared pool, if the overall data dictionary cache miss ratio exceeds 1 percent, increase the size of the shared pool.

Using these guidelines and the scripts and techniques covered in this two part article, your should be well on the way towards a well tuned and well performing shared pool.

