Free 30% Performance Increase!

Configuring Oracle Storage for Performance Gains

by David N. Reilly, Director of Marketing for ECCS Inc., and Jim McKinstry, Technical Analyst specializing in UNIX, for Sprint Paranet a vendor independent supplier of network services for distributed computing environments

1. Introduction

Databases, in general, need a lot of CPU, RAM and I/O bandwidth to perform properly. Oracle is no exception. Tuning a UNIX system to perform optimally while running Oracle is a daunting task. It's relatively easy to throw multiple fast CPUs on a server and load it up with RAM. Correcting I/O problems is usually a lot harder.

Relational databases have features to optimize I/O performance. To take full advantage of these features, storage architecture can be "tailored" to maximize the performance gains. This paper is intended to present the performance characteristics of storage architectures and storage devices (disk drives and solid state disks) and how continuous data storage hardware subsystems can be configured to complement database performance features and eliminate I/O bottlenecks. Examples are given of how to choose the RAID level appropriate to the data access pattern and the benefits of designating "hot" files, unusually active logs and temp files, as volumes on solid state disks (SSDs). These files receive a disproportionate percentage of a system's overall I/O requests and moving these files to SSDs, where they can always be accessed near instantaneously, dramatically improves user-level response. Benchmark examples of the performance improvements seen with various RAID architectures and use of high-speed devices will be included in the Conference presentation.

Disclaimer:

This paper is intended for educational uses. Topics discussed within should be thoroughly tested prior to implementation. The author assumes no liability whatsoever for any implementation of the presented material herein.

2. File Systems

a. Filesystems vs. Raw Partitions

A few years back, there was an argument against using file systems to house your Oracle data. It used to be that I/O to raw partitions was much faster than I/O to a file system. This difference in speed outweighed the benefits of using file systems. In recent years, UNIX file systems have become more and more efficient to the point where the difference in performance between raw and file system I/O is only an issue for the most taxed databases. On properly configured systems, Oracle now recommends that Oracle data be stored in file systems to take advantage of the file systems features, very importantly, backups.

b. UNIX File Systems

UNIX provides a slew of commands useful in managing a standard UNIX files system (UFS). Commands such as Is, cp, mv, tar, etc. are priceless when dealing with files. With these commands, it is easy to monitor the growth of the database and to move database files from filesystem to filesystem. Also, file systems can grow with the needs of the application. Standard and third party backup solutions are also critical to reliably backup data. Using UFS for Oracle is not a clear-cut decision. There are a number of drawbacks to using UFS for Oracle files. System crashes frequently damage files stored in a UFS and lead to long boot times while the file system checks its integrity. Also, redundant-caching (data stored in an Oracle buffers and the UFS data cache) and redundant-copying (data moves from Oracle to UFS to disk) are not very efficient.

c. Journaled File Systems

Journaled file systems were developed, in part, to improve on the above mentioned reliability of the UFS. While retaining all of the UFS user commands, Journaled file systems are also very resistant to damage caused by system crashes. As a result, systems running JFS boot very quickly after a system failure with fewer, if any, damaged files. Unfortunately, journaled file systems are still plagued by the inefficiencies of redundant-copy and redundant-caching operations.

d. Raw Volumes

Using UNIX raw devices (or character special files) can provide some performance improvements over UFS and JFS implementations. Raw I/O allows Oracle to write directly from the shared global area to disk without incurring the overhead of I/O buffering associated with file systems (redundant-caching and redundant-copying). Also, only raw devices support asynchronous I/O, which can add a nice boost in performance. The downside to raw I/O is that it is difficult to administer a database stored on raw partitions. Since you can't manipulate files stored on a raw device the way you can manipulate files in file systems, it is harder to add files to the database, load balance and perform backup/recovery functions. Raw I/O has shown to provide performance gains in only a small amount of production sites. For most implementations, with the configuration of disks using RAID architecture, assigning cache and implementing Solid State Disks, Oracle using files systems will perform as well, in not better than, it would if raw devices only were used.

e. A Word About Database Layout

The "old" way of building an Oracle database was to create one file system or raw partition per disk. The Oracle DBA would then have to monitor the database using UNIX commands, such as sar, and Oracle tools, such as ORACLE Monitor or looking directly at the v_$ tables, etc., to detect any "hot spots." Once the over utilized disks were identified, the DBA would have to juggle the data across the drives to try and balance the load. With a predictable, well-behaved database, and an excellent DBA/System Administrator team, this could actually happen! Usually, systems and performance fell somewhat short of the optimum.

This led to the discovery that the best way to improve I/O performance, using arrays of disks, is to group the disks together and spread the I/O across them as opposed to using a "one file system/partition per disk" approach. An easy, efficient way to group disks together is to use some sort of architecture that improves performance as well as protecting the data from individual disk failures.

3. Enter RAID

Massiglia defines RAID an: An acronym for redundant arrays of independent disks, a family of techniques for managing multiple disks to provide desirable cost, data availability, and performance characteristics to host environments. It will be sufficient, for this paper, if we look just at the performance attributes of several RAID architectures. There is an inherent performance advantage in using a large number of smaller disks rather than a few large disks: the increased number of actuators provides multiple simultaneous accesses to data. It also makes it easier to distribute data across all members for dynamic load balancing.
[image: image1.wmf]Figure 6 - RAID Level Performance Comparison

0

5

10

15

20

0

50

100

150

200

250

300

350

400

Requests Per Second

Average Access Time

RAID 3

RAID 5

RAID 0

RAID 10

RAID Level 0:

RAID level 0 is disk striping. This is where data is spread, or striped, across multiple disk drives. RAID level 0 is technically not RAID as it does not provide data protection in the event of a disk or media failure (i.e. the data is not redundant). It does, however, deliver higher performance compared to an equal number of independent disks.

[image: image2.wmf]Figure 1

RAID-0 Data Striping

Each block is subdivided for

storage on member disks

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

RAID Level 1:

RAID level 1 is disk mirroring. Each disk has a mirrored partner and all data is replicated, or duplicated, on each disk. Write performance is about the same as for a single disk, however read performance in increased as the data can be read from the primary or mirror disks whichever is faster.

[image: image3.wmf]Figure 14

Oracle-Specific Configuration

Redologs

 RAID 1

Mirror - Two 536 MB

SSDs

Index Files RAID 0 -

Two 268 MB

SSDs

Database

Tablespace

RAID 10 - Six 9 GB Disks

Temp Files

Single Disk

RAID Level 3:

RAID level 3 is RAID architecture using a single dedicated disk to store parity with data striping, in parallel, across all of the disks in the array. RAID 3 is usually used in CAD/CAM or imaging type applications rather than database and OLTP applications as its performance advantage is in bandwidth, rather than high I/O transaction rates. We will not discuss this RAID level in this paper.

[image: image4.wmf]Figure 3

RAID-3 Parallel Access with Parity

Parity is calculated and each block is sub-

divided for parallel storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

RAID Level 5:

RAID level 5 also uses parity to protect the data, however it is striped across all of the drives in the volume. Read performance is substantially better than for a single disk, or parallel access array, as there is independent access to each disk. Write performance is poor due to the complexity of parity processing. RAID Level 5 performance is scalable as with more disks provide more independent access.

[image: image5.wmf]Figure 4

RAID-5 Independent Access with Parity

Parity is calculated and each block is sub-divided

for independent storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

Subblock

2.4

Parity

2

Subblock

2.1

Subblock

2.2

Subblock

2.3

RAID Level 10:

RAID level 10 (also known as Raid 0+1 or Raid 1+0) is a striped mirror. It provides the high read/write performance of RAID level 1(mirroring) with the speed of RAID level 0 (striping). RAID level 10 is replacing RAID level 5 in many installations since the cost of storage is so cheap and RAID level 10 is faster and more reliable than RAID level 5.

The chart, below, shows how RAID Level 10 holds a clear performance lead over the other RAID levels.

[image: image23.wmf]Figure 11

Comparison of SSD to

10,000 RPM Hard Drive

Activity/Specification

10,000 RPM

Hard Drive

Solid State Disk

Latency Time

2.99 milliseconds

0

Seek Time

5.20 milliseconds

0

Total Access Time

8.19 milliseconds

0.50 microseconds

Write a 100 MB File

80 seconds

20 seconds

Read and Write Timings from ORACLE

Monitor for 1,000 row inserts

1,300 seconds

500 seconds

[image: image6.wmf]Figure 13 - Matching Storage Performance to

Oracle Database Needs

0

20

40

60

80

100

0

20

40

60

80

100

% of Database

% of Accesses

Cold

Database Tablespace

RAID 10

Warm

Index Tablespaces

RAID 0

Hot

Redo Logs/Rollback Segments

SSD

It should also be noted that performance of parity RAID levels (3 and 5) is affected by the ratio of reads to writes. Figure 7 clearly shows that a single disk and RAID 10 maintain essentially the same performance level across the spectrum from 100% reads to 100% writes, while RAID 5 performance can decrease by over 60%. This is due to the need to calculate parity for each write as previously explained.

4. How About Cache?

According to Reilly in Mission-critical Systems Management, the next step towards optimal performance is to take advantage of the extremely high speed of solid state memory. The basic idea is to buffer data in solid state storage, at different levels, to satisfy a significant proportion of requests via memory lookups to minimize physical disk reads. This provides access times up to 300 times faster than mechanical disk drives by overcoming the mechanical limitations of seek and latency.

Using cache, reads and writes are stored in memory first and then written to disk. This allows subsequent queries of this data to be processed very fast. The host operating system usually has its own buffer cache where frequently used data can also be stored. This scheme increases the probability of finding the data in one of the caches so that the mechanical part of fetching data can be avoided as much as possible. If the data is not found in the operating system cache, then it may still be in the controller cache. Host cache tuning is a whole other discussion that is best approached through a detailed understanding of the system and application.

[image: image7.wmf]Figure 12 - SSD Performance Increases

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

I/Os per Second

Average Response Time

RAID 5 Array

With 134 MB SSD

With 268 MB SSD

With 536 MB SSD

Reuse is the most straightforward use of cache. Once a block of data is read or written, it remains in cache. Every request for a database block first scans cache; if it finds the data in cache, a logical read will then satisfy the request. This is a cache-hit. If the request does not find the block in cache, it requires a physical read of the data from the disk to cache and from cache to the host. This is a cache miss. For cache to be beneficial there must be enough cache hits to make up for the added overhead of cache management including cache misses. Cache management consumes processing resources and, although extremely fast, takes time. Therefore on a theoretical system with a zero cache hit rate, the performance with cache will be somewhat less than the same system under the same load without cache. In real life, minimizing the need for disk I/O can improve performance significantly as the quicker I/O response time more than makes up for this delta.

In fact, a system can show a large performance improvement with a very low cache hit rate so long as the time it takes to service a cache miss is substantially more than the time it takes to service a cache hit. For example, let's say that it takes a full second (1000ms) to service a cache miss but only 1/1000th of a second (1ms) to service a cache hit. The total service time for 100 I/Os with:

0% hit rate = (0 I/Os * 1ms) + (100 I/Os * 1000ms) = 100000ms = 100 seconds

10% hit rate = (10 I/Os * 1ms) + (90 I/Os * 1000ms) = 90010ms = 90.01 seconds

You can also see that the ratio of hits to misses is key in calculating benefits of cache. Since cache works on the principle of locality of reference, applications with data that is closely spaced in address and time will improve the probability of finding that data in cache when needed and thereby generating a cache hit. Hit ratios of above 50% are not uncommon. By the way this equation is empirical at best and in the real world the performance gain from continually increasing cache size eventually reaches a point of diminishing returns.

Most workloads are a combination of reads and writes, which will also influence access times. Figure 9 illustrates this dependency.

[image: image8.wmf]Figure 9 - Data Access Time vs. Read/Write Ratio

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

70

80

90

100

Average Access Time

Cache

Disk

A high-performance data storage subsystem’s cache should also provide the ability to dynamically reconfigure cache allocation. By being able to configure cache for each volume, you can assign cache to high-impact volumes (i.e. Oracle indexes, logs) and turn it off for the volumes that don't necessarily need the performance (i.e. user data). You may also want to configure the cache differently based on what the systems will be doing. During the day you may want the cache mode set one way for the high OLTP processing while at night you may want it configured to handle the batch processing.

For example, an ECCS financial services customer reconfigures cache to hold tempdb files during batch operations overnight. Did it help? A run that took from midnight to 7 a.m. without cache now is completed by 3 a.m., a timesaving of 57%.

Just a note before we finish this short discussion of cache, the Synchronix mirrors it's cache across its two controllers. This is very important because in high transaction databases, cache can hold a lot of data that has not been written to disk. If the active controller goes down, all of the data in the cache is lost. With the Synchronix, the hot-spare controller, which holds the mirrored cache, comes on-line and none of the cache data is lost.

[image: image9.wmf]Figure 8 - Data Access Time vs. Cache Hit Ratio

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

70

80

90

100

Cache Hit Ratio (%)

Average Access Time

Cache

Disk

5. Stripe Depth

When configuring a volume on the Synchronix, you may also want to customize the stripe depth. The stripe depth defines how much data is written to a disk before the next disk is written to. Example: assume that you have 3 disks grouped into a RAID level 0 volume with a stripe depth of 3. If you are writing 18 blocks of data then 3 blocks are written to disk 1, 3 blocks to disk 2, 3 blocks to disk 3, 3 blocks to disk 1, 3 blocks to disk 2 and the last 3 block to disk 3. In this example, the first 9 blocks are written as 3 blocks simultaneously to each of the 3 disks and the second 9 blocks are written in the same manner. This equals 18 blocks written to 3 disks in the same amount of time it takes to perform a write of 6 blocks to one disk. The optimum is to have the first read/write to disk 1 finish just in time to accept the second read/write to disk 1. With this in mind, if you are reading and writing small amounts of data then you want a small stripe size. You want each read and write to access as many drives as possible to increase performance. The more drives you have working for you, the faster the read or write will occur since the drives will be sharing the load.

6. Solid State Disks (SSDs)

Solid State Disks are the fastest storage technology available, both in terms of access time and transfer rate. They have sub 50 microsecond access times allowing I/O throughput rates of up to 8,000 I/Os per second. Compare this to today’s fastest 10,000 rpm SCSI drives with 8.19 millisecond average access time and about 125 I/Os per second.
[image: image10.wmf]Figure 11

Comparison of SSD to

10,000 RPM Hard Drive

Activity/Specification

10,000 RPM

Hard Drive

Solid State Disk

Latency Time

2.99 milliseconds

0

Seek Time

5.20 milliseconds

0

Total Access Time

8.19 milliseconds

0.50 microseconds

Write a 100 MB File

80 seconds

20 seconds

Read and Write Timings from ORACLE

Monitor for 1,000 row inserts

1,300 seconds

500 seconds

A solid-state disk drive is a disk drive that uses semiconductor storage (DRAMs) instead of magnetic platters as the data storage media. Since they are memory and have no moving parts, solid-state disks do not have any of the delays associated with the mechanical components of magnetic disks (seek time, rotational delay, latency, etc.) leading to their very high performance. Solid-state disks use the same SCSI hardware and are accessed as if it were a mechanical disk using normal SCSI commands.

SSDs can easily be installed in sophisticated RAID storage devices such as the Synchronix. A solid-state disk can replace any conventional disk in the system. They can be used as individual disks or in any of the supported RAID configurations. To the end-user and more importantly the Operating System, a solid-state disk looks and acts like any other SCSI disk. The fact that the disk is solid-state is totally transparent to the operating system. The only difference to the OS is that the solid state disks are about 100 times faster than magnetic disk.

The greatest improvement in performance will be seen in small, random I/O requests. There is no waiting for the disk heads to move to the next piece of data. Performance gains start to diminish, as I/O requests grow larger and more sequential. Larger, sequential I/Os spend more time transferring the data then they do on locating the data on the disk (which is where solid-state technology thrives).

[image: image11.wmf]Figure 4

RAID-5 Independent Access with Parity

Parity is calculated and each block is sub-divided

for independent storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

Subblock

2.4

Parity

2

Subblock

2.1

Subblock

2.2

Subblock

2.3

Figure 12 shows the increase in performance of adding an SSD to a 10 GB database. The data is for a sustained read and write benchmark (78% read/write ratio; 2 kb reads; 4.5 kb writes) running on a RAID 5 group of five 7,200 rpm disk drives. Adding 134 MB of SSD increases I/O performance 70%; 268 MB increases performance 96%; and 536 MB increases it 165%.

7. DESIGNING YOUR DATABASE FOR OPTIMAL PERFORMANCE

a. The “Hotrod’ Oracle Configuration

In a perfect world, Oracle databases would have large amounts of mirrored solid-state disks spread across many Synchronix systems to hold everything Oracle needs. Unfortunately, this is currently cost prohibitive. The ideal solution for Oracle databases, balancing cost and performance needs, is to match the performance characteristics of various storage architectures to the demands of the Oracle system. The general principal is illustrated in Figure 13.

[image: image12.wmf]Figure 2

RAID-1 Mirroring

Each block

is stored on

each disk

Block 1

Block 1

Following is a discussion of how the Synchronix can, realistically, be configured to optimize Oracle performance.

b. Redo Logs/Archive Logs

The redo log stores a log of all changes made to the database (caused by insertions, deletions and updates to user and system data within the database). The primary function of the redo log files is to record the information needed to roll forward a database in the case of a system failure. When a modification is made to the database, row/table identification information as well as what was changed is saved in the redo log. The information stored in the redo log is used to reapply changes that have been made and committed but may have not made it to the data files in the event of a system failure. The redo log has at least two log files (or redo log file groups. Redo log file groups are mirrored by Oracle. Redo log file groups are also called Multiplexed redo logs) that are used in a round-robin fashion. When a redo log file has filled up, the logging operation (LGWR) moves to the next redo log file. An application with high transaction rates will write large volumes of sequential data to the redo logs in a very short time. If the redo log is lost then you cannot recover the database in the event of a crash.

Archive logs and redo logs go hand-in-hand. When running with archivelog enabled (which is highly recommended) the LGWR process fills a redo log and starts writing to the next redo log, that triggers the ARCH process to start archiving the just closed redo log. Like redo logs, archive logs are used to recover the database in the case of a system failure.

1) Oracle Recommendation

Redo logs are 100 percent sequential I/O and need to be isolated from randomly accessed files (user data) in order to increase performance. Speed of the redo log is essential to performance of the system. Place redo logs on the fastest, fault tolerant devices available. If your Oracle applications require heavy updating and inserting activity, you will maximize performance by locating redo logs on disks that support no other activity. Similarly, if you plan to enable the archiving option, you should place each redo log on a separate disk to eliminate disk contention between the LGWR process (writing to the current log) and ARCH process (reading from the closed redo log). Redo logs must be mirrored, to protect against disk failure, by using redo log file groups or RAID.

If the disk that the redo log is stored on is faster than the disk the archive log is on then the ARCH process will not be able to keep up with the LGWR process and the systems' performance will degrade as the LGWR waits to process. With this in mind, it is recommended that the disks that store the archive logs be the same type and configuration as the disks that hold the redo logs.

2) Solution

With the Synchronix, there are different options for redo logs. One option would be to create a RAID level 1 volume and enable cache for that volume. Again, an application with high transaction rates will write large volumes of sequential data to the redo logs in a very short time. Unfortunately, this type of activity can quickly saturate cache making it less and less effective taking away cache that would be better used for the rest of the system. Also, "wasting" a pair of large drives for redo logs is not cost/performance effective.

Another option would be to create a large RAID level 10 volume with small stripe size and no cache enabled. The striping would perform effectively enough that adding cache would add only add marginal, if any, performance increases. Again, the wasted space would be excessive.

A RAID level 5 configuration is not recommended for redo logs. The high write activity associated with redo logs is likely to overpower the I/O rate that can be supported by RAID level 5. Also, a RAID level 0 solution is not recommended since it provides no data redundancy.
The best solution is to add a pair of solid state disks (SSD) to the Synchronix, mirror them and use them to hold the redo logs. Since redo logs cause most database I/O bottlenecks and their size is relatively small compared to the data in almost all cases, it is recommended, by Corrigan and Gurry in Oracle Performance Tuning, that these be placed on the fastest disk available. Moving these files to solid state disks, where they can always be accessed near instantaneously, can dramatically improve user-level response. Mirroring the SSDs provides the protection needed. SSDs enable the log files to be searched and sorted extremely quickly to significantly reduce database log recovery time and increase overall database performance. This technique for redo logs alone can improve system performance by 20% or greater. Applying similar techniques for indexes and tables will improve performance even more.

Again, whatever strategy you choose for your redo logs should also be used for your archive logs. It is very important to store your archive logs on disks as fast as the disk that the redo logs are stored on. If, for some reason, you decide not to run with archivelog enabled, you should consider using raw devices for the redo logs. Since redo logs are not backed up and don't need to be "touched" with file system commands, there is no issue storing them on raw devices.

c. Indexes

Oracle uses indexes the same way a person would use an index in a book. Without an index, a person must read the book until he finds the information he is looking for. With an index, the person can very quickly go directly to the appropriate part of the book. With Oracle, if there is no index, a full table scan must be performed. This is very I/O, memory and CPU intensive. With indexes, Oracle can go directly to the information in the table. When properly used, indexes can significantly reduce I/O to the datafiles and greatly improve overall performance.

1) Oracle Recommendation

Oracle indexes, in general, should be on separate devices from the tablespace holding the data they reference. They also need to be on fast devices to optimize performance. Because indexes are accessed randomly, stripping with a small stripe size is recommended.

2) Solution

If your system can handle the loss of it’s indexes and the time it takes to rebuild them, they should be stored on a RAID level 0 volume with a small stripe size and cache enabled. This is the best non-SSD solution for random I/O. Of course, storing the indexes on an SSD (or a RAID level 0 volume of 2 or more SSD drives if the indexes need more space) will deliver the optimum performance.

To protect against losing your indexes due to media failures, a RAID level 10 volume of magnetic disks should be used with a small stripe size and cache enabled. Again, for optimum performance and availability, a mirrored pair (RAID level 1) of SSDs (or, if the indexes need the space, a RAID level 10 volume, with small stripe size, of SSDs) should be used.

d. Temporary Segments

Temporary segments are used for operations that have intermediate results. The typical functions that rely on temporary segments are large sorts, complex queries and long-running jobs. These types of functions frequently cannot be accommodated in system memory and must write data to temporary segments on disk. The Parallel Query option also uses the temporary segments. They are used to pass information between the query coordinator and the slave processes. Since the processes that use temporary segments must first write the data and then read it when needed, their performance is dependant upon the devices that hold the segments. Faster is better.
1) Oracle Recommendation

Since Oracle uses temporary segments to hold the overflow that can't be contained in memory, the fastest storage available should be used. To help improve performance, multiple temporary tablespaces should be allocated in order to distribute the load multiple devices. Ideally, more system memory allocated to the SGA would provide the best overall performance boost.

Reliability and availability are not major factors in temporary segments. The data is not permanent and can be easily recreated. Speed is the major consideration when allocating temporary segments.

2) Solution

Since the loss of data held in the temporary segments does not affect the consistency of the database, it does not need to be redundant. With this in mind, you don't even need to consider RAID levels 5 and 10. Depending on the application, you may be able to use a single disk with cache enabled. The next step up in performance would be to use multiple disks in a RAID level 0 volume with cache enabled. If your application relies heavily on temporary segments, you will get immediate performance improvements my allocating your temporary segments on Solid State disks.

e. Rollback Segments

Like redo logs, rollback segments generally have a high level of activity since they are written with every database change. Rollback segments store data as it looked before an update was made. Rollback segments keep undo information that is used to roll back transactions. This is useful if mid-way through a transaction you decide that you don't want to commit the change. In this case, Oracle uses the rollback segments to restore the data to its original form.

Rollback segments also provide read consistency. Read consistency allows a lengthy transaction to have the same view of that data throughout its processing even though another user might have changed the data. In the event of a system failure, all changes in the rollback segment will be recovered.

1) Oracle Recommendation

For applications with high rollback usage (applications where lots of data changes occur), place the rollback segments into tablespaces that hold nothing but rollback segments. Multiple transactions can access the same rollback segment. To accommodate this, rollback header segments are locked while writes are made to a rollback segment. This may cause contention on the rollback segment until the write is complete. Also, ORACLE buffers the rollback segments in the SGA, but when large transactions occur, the rollback segments are read/written to the disk. Because of these two factors, rollback segments should be placed on very fast, dedicated storage.

Reliability and availability are important concerns for rollback segments due to the possibility of needing this data to rollback to the initial state of the data.
2) Solution

Ideally, for optimum performance, you'd like the rollback segments to be cached in the SGA. This is not always possible and the underlying storage device must be accessed. As mentioned above, multiple transactions can access the same rollback segment causing contention for the segment. The goal is to provide as fast a solution as possible to reduce the likelihood of contention. Since the data stored in the rollback segment is critical to the proper function of the database, they should be protected with RAID. As for redo logs, the Synchronix has multiple options for the rollback segments.

Implementing a RAID level 1 or RAID level 5 solution with cache enabled may be a viable solution for many applications. If your application does not perform large, concurrent, transactions then the cache will not be saturated and this would be a decent solution.

If your application performs some large transactions then a RAID level 10 solution may be in order. RAID level 10 with cache enabled is very fast and may be able to handle the workload if the large transactions are not too large and not concurrent.

If your application performs many large, concurrent, transactions then placing rollback segments on a mirrored pair of SSDs with no cache enabled will reduce contention by speeding I/O.

f. Database Files

The database files are the meat of the database. They hold all of the users data and have traditionally been held in RAID level 5 volumes.

1) Oracle Recommendation

Oracle database files should be on dedicated storage (in fact, all of the files talked about in this paper should have dedicated storage). Besides the performance impacts, the database files require different backup methodologies than the rest of the system. Isolating the database files makes the backups easier to perform. Data files should also be protected by RAID to protect against failures and costly downtime due to recovery.

2) Solution

Ideally, the database files should be stored in a large RAID level 10 volume of SSD drives. This is where the cost becomes prohibitive. The next best solution is to have multiple (depending on the database characteristics) RAID level 10 volumes with cache enabled. Set the stripe size based on the type of application (ex. OLTP systems typically have a lot of random I/O. The stripe size for these volumes should be small). Using multiple volumes allows the heavily utilized files to be separated from each other and to be grouped with the less accessed files.

[image: image13.wmf]Figure 1

RAID-0 Data Striping

Each block is subdivided for

storage on member disks

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

RAID level 5 may be a viable alternative for many implementations. Since the cost of disk storage is so cheap now, it is recommended to use RAID level 10 instead to take advantage of the reliability, availability and performance in a failure mode.

8. The Proof of the Pudding

Benchmark testing and data collection was incomplete at the time this paper was submitted. The conference session will emphasize both modeled and tested configurations to illustrate the potential and actual performance gains from:

· Setting up RAID levels appropriate to file activity;

· Placing redo logs and indexes on SSDs;

· Implementing the oracle-specific configuration in Figure 14.

9. Summary

To provide on-line, immediate access to Oracle data is one of today’s DBA’s major challenges. Luckily, the best continuously-available, high-performance data storage systems, such as the ECCS Synchronix family, can meet the performance requirements of your users' needs.

"Hot" files - unusually active files that receive a disproportionate percentage of a system’s overall I/O requests, cause most database I/O bottlenecks. Because of their access frequency, data in these hot files must be accessed at near instantaneous speeds. Moving these files to dedicated disks, with the appropriate RAID level, or to solid state disks (SSDs), can dramatically improve user-level response time and eliminate many of today's most common storage bottlenecks. The greatest I/O activity with ORACLE databases involves rollback segments, redo logs and temporary segments. This paper has illustrated a number of options that can be explored to achieve substantial performance increases for many ORACLE-based applications.

Implementing every recommendation in this paper may not be feasible or even necessary for some applications. It is important to identify your systems I/O hot spots and use the appropriate performance enhancing method for each area. This paper has shown that a couple of well-placed SSDs can significantly increase the performance of an Oracle system that is I/O bound. As is common in solving any performance problem, once one I/O bottleneck is removed another one may crop up (or CPU or RAM bottleneck). Oracle systems should constantly be monitored for bottlenecks and corrected as needed.

References:

Corrigan, Peter and Gurry, Mark, Oracle Performance Tuning, O’Reilly and Assoc, 1993.

ECCS White Paper, Understanding Solid State Disks, 1997.

ECCS White Paper, The Special Case of Solid state Disks (SSDs), 1998.

Gupta, Gita K., Tuning the Oracle 7 Database for Optimal Performance. Oracle magazine, Jan, Feb. 1996.

Lirov, Yuval, Mission-critical Systems Management, Prentice Hall PTR. 1997.

Massiglia, Paul, The RAID Book, RAID Advisory Board. 1997.

Millsap, Cary V., The OFA Standard, Oracle Corporation.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Word.Picture.8 ���

[image: image14.wmf]Figure 9 - Data Access Time vs. Read/Write Ratio

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

70

80

90

100

Average Access Time

Cache

Disk

[image: image15.wmf]Figure 5

RAID-10 Data Striping and Mirroring

Each block is

subdivided for

storage on

member disks

and replicated

on the

mirrored set

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

Subblock

1.4

Subblock

1.3

Subblock

1.2

Subblock

1.1

[image: image16.wmf]Figure 8 - Data Access Time vs. Cache Hit Ratio

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

70

80

90

100

Cache Hit Ratio (%)

Average Access Time

Cache

Disk

[image: image17.wmf]Figure 10

Stripe Depth

Disk 1

Disk 2

Disk 3

1

4

7

2

5

8

3

6

9

10

13

16

11

14

17

12

15

18

[image: image18.wmf]Figure 12 - SSD Performance Increases

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

I/Os per Second

Average Response Time

RAID 5 Array

With 134 MB SSD

With 268 MB SSD

With 536 MB SSD

[image: image19.wmf]Figure 13 - Matching Storage Performance to

Oracle Database Needs

0

20

40

60

80

100

0

20

40

60

80

100

% of Database

% of Accesses

Cold

Database Tablespace

RAID 10

Warm

Index Tablespaces

RAID 0

Hot

Redo Logs/Rollback Segments

SSD

[image: image20.wmf]Figure 7 - RAID Performance vs. Read/Write Ratio

0

50

100

150

200

250

0

25

50

75

100

I/O per

Second

RAID 5

RAID 10

JBOD

[image: image21.wmf]Figure 14

Oracle-Specific Configuration

Redologs

 RAID 1

Mirror - Two 536 MB

SSDs

Index Files RAID 0 -

Two 268 MB

SSDs

Database

Tablespace

RAID 10 - Six 9 GB Disks

Temp Files

Single Disk

[image: image22.wmf]Figure 3

RAID-3 Parallel Access with Parity

Parity is calculated and each block is sub-

divided for parallel storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

_980313953.xls
Chart1

		0		0		0		0

		30		30		30		30

		50		50		50		50

		100		100		100		100

		150		150		150		150

		200		200		200		200

		300		300		300		300

		320		320		320		320

		380		380		380		380

		400		400		400		400

RAID 3

RAID 5

RAID 0

RAID 10

Requests Per Second

Average Access Time

Figure 6 - RAID Level Performance Comparison

2

8

5

6

6

9

5.5

6.2

16

10

6

6.5

12

7

7.5

16

8

8

9

8.5

14

11

16

12

14

16

Sheet1

		Percentage		RAID 3		RAID 5		RAID 0		RAID 10

		0		2		8		5		6

		30		6		9		5.5		6.2

		50		16		10		6		6.5

		100				12		7		7.5

		150				16		8		8

		200						9		8.5

		300						14		11

		320						16		12

		380								14

		400								16

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

RAID 3

RAID 5

RAID 0

RAID 10

Requests Per Second

Average Access Time

Figure 6 - RAID Level Performance Comparison

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_980316771.xls
Chart1

		0		0

		3		3

		5		5

		10		10

		20		20

		30		30

		40		40

		60		60

		100		100

Cold
Database Tablespace
RAID 10

Warm
Index Tablespaces
RAID 0

Hot
Redo Logs/Rollback Segments
SSD

Cache

0

% of Database

% of Accesses

Figure 13 - Matching Storage Performance to
Oracle Database Needs

0

0

40

0

50

70

88

98

100

100

100

Sheet1

		Percentage		Cache		0

		0		0		0

		3		40		0

		5		50

		10		70

		20		88

		30		98

		40		100

		60		100

		100		100

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Cold
Database Tablespace
RAID 10

Warm
Index Tablespaces
RAID 0

Hot
Redo Logs/Rollback Segments
SSD

Cache

0

% of Database

% of Accesses

Figure 13 - Matching Storage Performance to
Oracle Database Needs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_980321708.xls
Chart1

		100		100

		0		0

Cache

Disk

Average Access Time

Figure 9 - Data Access Time vs. Read/Write Ratio

15

15

3

15

Sheet1

		Percentage		Cache		Disk

		100		15		15

		0		3		15

Sheet1

		

Cache

Disk

Average Access Time

Figure 9 - Data Access Time vs. Read/Write Ratio

Sheet2

		

Sheet3

		

_980317038.xls
Chart2

		100		100

		0		0

Cache

Disk

Cache Hit Ratio (%)

Average Access Time

Figure 8 - Data Access Time vs. Cache Hit Ratio

0

15

15

15

Sheet1

		Percentage		Cache		Disk

		100		0		15

		0		15		15

Sheet1

		0		0

		0		0

Cache

Disk

Cache Hit Ratio (%)

Average Access Time

Figure 8 - Data Access Time vs. Cache Hit Ratio

0

0

0

0

Sheet2

		

Sheet3

		

_980316723.xls
Chart1

		0		0		0		0

		10		10		10		10

		20		20		20		20

		30		30		30		30

		40		40		40		40

		50		50		50		50

		60		60		60		60

RAID 5 Array

With 134 MB SSD

With 268 MB SSD

With 536 MB SSD

I/Os per Second

Average Response Time

Figure 12 - SSD Performance Increases

3

2

1

0

3.5

2.5

1.5

0.5

9

4

2.5

1

25

10

4

2

25

9

5

25

9

25

Sheet1

		Percentage		RAID 5 Array		With 134 MB SSD		With 268 MB SSD		With 536 MB SSD

		0		3		2		1		0

		10		3.5		2.5		1.5		0.5

		20		9		4		2.5		1

		30		25		10		4		2

		40				25		9		5

		50						25		9

		60								25

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

RAID 5 Array

With 134 MB SSD

With 268 MB SSD

With 536 MB SSD

I/Os per Second

Average Response Time

Figure 12 - SSD Performance Increases

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_980315662.doc

Figure 11

Comparison of SSD to

10,000 RPM Hard Drive

Activity/Specification

10,000 RPM

Hard Drive

Solid State Disk

Latency Time

2.99 milliseconds

0

Seek Time

5.20 milliseconds

0

Total Access Time

8.19 milliseconds

0.50 microseconds

Write a 100 MB File

80 seconds

20 seconds

Read and Write Timings from ORACLE

Monitor for 1,000 row inserts

1,300 seconds

500 seconds

_980313217.doc
[image: image1.bmp]

Figure 1

RAID-0 Data Striping

Each block is subdivided for

storage on member disks

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

_980313285.doc
[image: image1.bmp][image: image2.bmp]

Figure 4

RAID-5 Independent Access with Parity

Parity is calculated and each block is sub-divided

for independent storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

Subblock

2.4

Parity

2

Subblock

2.1

Subblock

2.2

Subblock

2.3

_980258973.doc
[image: image1.png]

Figure 14

Oracle-Specific Configuration

Redologs

 RAID 1

Mirror - Two 536 MB

SSDs

Index Files RAID 0 -

Two 268 MB

SSDs

Database

Tablespace

RAID 10 - Six 9 GB Disks

Temp Files

Single Disk

_980258427.doc
[image: image1.bmp][image: image2.bmp]

Figure 3

RAID-3 Parallel Access with Parity

Parity is calculated and each block is sub-

divided for parallel storage on member disks

Parity

1

Subblock

1.1

Subblock

1.2

Subblock

1.3

Subblock

1.4

