The In's and Out's of Analyzing Your Schema
William M. Schott

The Detroit Edison Company

Author’s Note

The target audience for this paper is both beginning and intermediate DBAs who are using the Cost Based Optimizer and are searching for a way to keep the statistics on their tables current. I’ve tried to eliminate as much “assumed knowledge” as I can so a beginner who in not familiar with the Analyze Table command before can understand what I’m talking about. So I don’t lose any experienced DBAs, if you’re familiar with the Analyze command and the Cost Based Optimizer, please focus your attention on the “Why Do You Need These Scripts” and “Overview …” sections and just skim the others.

Optimizer Basics

So what is this Analyze command all about and why would I want to run it? The answer to that question could fill volumes, but a good short answer is “To feed the Cost Based Optimizer”. The Oracle RDBMS needs some way to determine the best way to retrieve the data requested by an SQL statement. A simple two table join could be resolved by (1) reading table a and linking to table b, (2) reading table b and linking to table a, or (3) reading both tables independently, then merging the results together. This process is commonly called “determining a SQL Path” and when you have many tables in a complex statement, the number of potential paths to be evaluated can be quite large. So a component called the “Optimizer” is charged with quickly determining what path to take to retrieve the data most efficiently and satisfy the query.

Optimizer Options

The classic Rule Based Optimizer (RBO) has 14 rules that it reviews in sequential order. As soon as a rule “fits”, it is applied to determine the SQL Path. The Rule Based Optimizer cares about the order you list the tables in the FROM clause and operates under the principle that “All Indexes are Good and Full Table Scans are Bad”. You could index a column that has 1 distinct value and the Rule Based Optimizer would use it if it could.

Oracle7 introduced the Cost Based Optimizer (CBO) which assigns an arbitrary number called a “cost” to every possible SQL Path, then picks the path with the lowest cost. For example, if you have a small table where all rows fit in one block, why would you read an index just so you could determine which block to scan for the rows? Just read the table block and get on with it! But to make that decision, the CBO needs to know where the infamous “high water mark” (highest used block in the table) is so it can compare the cost of a full table scan to the cost of an index search. And to calculate the cost of using an Index range scan of a multiple segment index, it needs even more information about each indexed column (e.g. a Histogram). This is what the Analyze Command provides.

Picking an Optimizer

So how can you tell which optimizer is being used? This is governed by a number of factors. For starters, look at the init.ora parameter “optimizer_mode”. This parameter determines the default optimizer for this instance. A value of Rule will invoke the Rule Based Optimizer while All_Rows, First_Rows, or Choose will default to the Cost Based Optimizer.

However some factors can cause one optimizer to hand off a query to be evaluated by the other. For example, if optimizer_mode = RULE and you run a query which contains a Hint, the RBO will hand that query off to the CBO since it doesn’t know how to deal with Hints. Or if you have optimizer_mode = Choose, but none of the tables have ever been analyzed, the CBO will hand the query off to the RBO since it doesn’t have enough information to assign a meaningful cost.

What this means is that if you’re running the Cost Based Optimizer, you must analyze your tables once they are fully loaded. Just setting Optimizer_mode = CHOOSE just enables the CBO by default. Until your schema has been completely analyzed, your SQL is at risk. One of the corollaries to running Cost Based is that “having bad statistics is worse than having no statistics”. Probably the only thing worst is to have a mixture of analyzed and unanalyzed tables in the same query; in that case, the CBO will assume what statistics exist for the unanalyzed tables and will proceed to assign costs using these assumed numbers.

So Why Use Cost Based?

There are many reasons to use the Cost Based Optimizer, but a main one is that Oracle is continuing to enhance the options available to it. This results in better, more efficient servicing of your queries. Optimizer options like Parallel Query, Hash Join, Sort Merge Join, Bitmap And, and others are all available to the CBO, but not to the RBO. The RBO is static and unchanging while the CBO continues to be developed, enhanced, and tuned. The CBO has made some dramatic improvements from 7.1 to 7.3 to 8.x. When properly “fed”, it now picks the “best” path more often than it did in the early days. If you are using these newer releases and features, you need to use Cost Based to take advantage of all they offer. And to use cost based, you need good statistics so it can make good decisions. Which leads to…

Why Do You Need These Scripts?

Once you’ve made a decision to use the Cost Based Optimizer, the process of keeping current and accurate statistics on all the tables of a schema (e.g. “Feeding the Optimizer”) becomes a never ending headache. Tables have different growth rates which means they have different requirements for being periodically analyzed. Since analyzing tables that don't need it is a waste of time, there is a need for a tool to analyze a select list of tables.

Oracle provides the DBMS_UTILITY.ANALYZE_SCHEMA package that lets you analyze an entire schema with one command. While this is convenient, it doesn’t give you any flexibility to analyze a few tables nor to change the analyze options for some tables. If you use it to Compute Statistics, you have to Compute Statistics on that one large monster table which most application developers are fond of creating as well as the dozens of smaller tables where a Compute Statistics option is appropriate. This means you must allocate an excessive amount of TEMP space to handle this one table and it also takes a long time to complete.

Given this wide range of demands and to prevent analyzing tables which don’t require updated statistics, I developed a set of scripts which can assist you with analyzing subsets of tables at various frequencies with different options in a routine, automated fashion. The balance of this paper will present the details of implementing these scripts as well as a major side benefit in collecting trend data.

Data Collection and Trending

One of the many benefits of managing an analyzed schema is the wealth of information that is available to you that is not available in an unanalyzed schema. You can quickly determine which tables have a row chaining problem by looking at the Chain_Cnt column of DBA_TABLES, or determine which tables are about to grow another extent by noticing that the Empty_Blocks column in DBA_TABLES is quite low. However, these numbers in and of themselves only tell part of the story. A much broader picture is painted when you see the Chain_Cnt growing by 500 rows/week or Empty_Blocks dropping by 150 blocks every two days. This provides information that can help predict future trouble before you get a 3:00 A.M. phone call.

In order to assist with this trending process, these scripts can capture the “statistics” columns from DBA_TABLES and store in a separate table where they can feed an analysis process. As a side benefit for non-Cost Based schemas, they also support a “Trending Only” mode where the tables are analyzed, statistics captured, and then the statistics are deleted so they won’t affect the performance of all those finely tuned rule based applications out there.

Analyze Command Structure

Before launching into the technical details, let’s review the structure and options available to the ANALYZE command. So what is this command all about? To quote the Oracle8 documentation, the purpose for this command is:

“To perform one of the following functions on an index or index partition, table or table partition, index-organized table, or cluster:
 collect statistics about the schema object used by the optimizer and store them in the data dictionary
 delete statistics about the schema object from the data dictionary
 validate the structure of the schema object
 identify migrated and chained rows of the table or cluster”

This paper deals primarily with the first option and touches on the second one. The other two options pertain to data integrity issues and not with the feeding of the Cost Based Optimizer.

Command Structure

There are three basic parts to this command:
1.
Identify the object to analyze
2.
Analyze method
3.
Histogram clause (7.3 and higher)

These parts are shown in the following example, with each part of the command on a separate line:
Analyze table scott.emp
compute statistics *or* estimate statistics sample 25 percent
for table for all indexed columns for all indexes;

Note that the second line has two forms: one for computing statistics which will read the entire table and is the preferred approach if you have the time and the TEMP space, and the second form which performs an estimate. This estimate will use 25% of the blocks in the table to project what the statistics for the entire table would be had you performed a “compute”. Note that the default for Estimate Statistics will use a sample size of 1000 rows so please avoid using this default.

Caution: Never estimate for over 50% since a full “compute” will be performed.

The third line will build a histogram for all indexed columns while also performing an analyze of every index on the table. A column histogram identified a count of how many rows have each distinct value. For example, you may have an index on ORDER_STATUS which only has 4 values: Open, Closed, Back Order, and Shipping. Without a histogram the CBO will assume each value would retrieve 25% of the table so it will never use this index. However a histogram could show that 90% of the rows contain Closed so it would use the index for any of the other 3 values, but never when where order_status = ‘Closed’ is specified.

I recommend using this clause every time you analyze a table, especially when running under Oracle 7.3 and higher. If you don’t build a histogram, the optimizer may not use an index unless you specify all segments of a multiple segment index.

Overview of the Scripts and Process

The heart of this process is a PL/SQL routine called ANALYZE_SCHEMA (Figure 4). The ANALYZE_CTL table (Figure 1) controls the actions of the Analyze_schema script and optionally updates the ANALYZE_TREND table (Figure 2). The inputs to ANALYZE_SCHEMA are a Schema Owner, an arbitrary label called a Set_Name for a group of tables to be analyzed, and a temporary filename. It reads ANALYZE_CTL, generates a SQL script containing the desired ANALYZE commands, and then executes that script. This gives you a very flexible system which permits you to determine which tables you want to analyze, when you want them analyzed, and with what options.

The Scripts

The setup process consists of creating two tables and then running a script to populate ANALYZE_CTL.

Creating the Control & Tracking Tables

To understand these scripts you must start with the ANALYZE_CTL table. The ANALYZE_CTL.DDL script (Figure 1) (documented via the Comment commands) creates this table. The Primary Key of Schema, Set_Name, and Table_Name permits you to have multiple “Analyze Sets” for a particular schema while supporting multiple schemas within one database. For example, you could define a FULL set for each schema to analyze all tables, while some schemas have additional sets named MONTHLY, DAILY or WEEKLY to determine which tables are analyzed at those frequencies. You could have sets named Monday, Tuesday, Wednesday,... or any other name that makes sense. I have several schemas where I’ve created single table sets and have named those sets after those tables.

Furthermore, the Analyze Options for a given table can vary between different sets. You may want to Estimate Statistics Sample 15 percent on a particular table during a Thursday night run when you don't have much time, but Sample 40 Percent for the Sunday afternoon run when you don’t have to worry about contending with any batch jobs. The Analyze_ctl table provides all these options.

The second table is named ANALYZE_TREND. It is created by the ANALYZE_TREND.DDL script (Figure 2) and holds the time stamped statistics so you can observe trends over time. The power of this will become quite obvious once you’ve implemented this system for one of your schemas and run the process for a few cycles. (See Using the Trending Statistics)

Populating ANALYZE_CTL

The ANALYZE_SETUP.SQL script (Figure 3) is the primary way to populate this table. It has three prompts: Table Owner, Set Name, and Table Match Pattern. Once provided, it will insert rows for all tables which match the provided pattern. You can run ANALYZE_SETUP any number of times for a given schema, typically with different Set Names. You can build up a single set by running it multiple times with the same Set Name and different table patterns.

This script uses the allocated space from DBA_SEGMENTS to determine whether to default to Compute or Estimate statistics for each table. Any tables with more than 40MB allocated will be configured to estimate 15 percent while all smaller tables will have their statistics computed. Feel free to modify this script to match the default parameters for your site or even keep multiple copies around with different defaults. However don’t feel you need to put all the intelligence into this script since once ANALYZE_CTL has been populated, you have the full capabilities of the INSERT, UPDATE and DELETE commands available to you to modify the rows that make up a particular Set. I suppose you could generate an Oracle Form to handle maintenance, but any DBA worth his salt should be able to handle it with native SQL commands.

Running ANALYZE_SCHEMA

Now that you have established all your Sets in ANALYZE_CTL, it’s time to put that effort to work. Using the scheduling tool of your choice, launch SQLPLUS to run the command @ANALYZE_SCHEMA {Schema} {Set Name} {tempfile.sql}. This PL/SQL script (Figure 4) generates a SQL script and then runs it and exits sql*plus. A sample Korn shell script is available for download with the other SQL scripts.

A Case Study

One database has many active tables, with one large history table. Since analyzing this large 29 million row table takes quite a while, even with a sample size of 15 percent, it doesn’t make sense to analyze it every week. Consequently, two Analyze Sets were created: Weekly and History. The Weekly set contains all tables except the large history table while the History set contains a single table. The scheduler was configured to run the Weekly set every Sunday at 1500 and to follow that with the History set on the 1st Sunday of each month.

Using the Trending Statistics

Once you’ve completed a couple of runs, it’s time to examine ANALYZE_TREND. Of particular interest is watching a table’s statistics change over time. This can be accomplished by SELECTing all entries for that table and including an Order By Trend_Date clause in your SQL. See Figures 5 and 6 for a sample query and output.

Monitoring Chained Rows

Figure 5 shows my favorite Analyze_Trend query. Knowing a table has 73 chained rows is of limited usefulness unless you compare it to how many rows the table has at that point in time. If 73 of 227 rows are chained, I’ll take action; for 73 of 832,582, I’ll leave it alone (especially if the number of chain rows is not growing).

Also if you’ve modified PCTFREE on a table, did you raise it enough? Without a trending tool, it’s hard to tell. In this case, just wait a few weeks and see if your number of chained rows has stopped growing. If it has, then you’re OK for now. If not, then increase PCTFREE by another 5 percent.

As you can see from Figure 5, I had some work to do on the Employees_on_Duty table.

Analyze Trend Dump

Figure 6 shows a basic Analyze_Trend query which dumps out useful information about a single table. In this case it’s one of our faster growing tables. While I won’t pretend to explain all the raw data, you can see that a report like this gives you a solid picture of how this table has grown over the past 44 weeks.

Even Better Stuff

For those of you who are graphically minded, another useful practice is to connect to the database with the tool of your choice and display the results graphically. You can make an ODBC connect from Excel, select the rows for one table from Analyze_Trend, and then draw a graph showing Num_Rows vs. Time. That would make a neat picture of table growth.

You can select related tables and graphically show the correlation in rate of growth between the two tables. Once you get started, you’ll be amazed at the wealth of information you’ll suddenly find at your fingertips. The possibilities are endless!

Conclusion

The simplicity of this setup is its strength. Keeping your statistics up to date can be quite painless if you use a systematic method for running Analyze_schema. Once in place, just sit back and watch that application hum along.

So what are you waiting for! Grab these scripts, and get started. And when combined with the analytical power of the information you can extract from Analyze_Trend, you can detect potential and actual problems in time to fix them before that 0300 phone call disturbs a good dream.

About the Author

Bill is a Chauncey Certified Oracle DBA with 4 years experience managing databases for Detroit Edison. He has over 25 years experience as an application developer, data modeler, and Oracle DBA and has previously presented papers at the Oracle Data Tools User Group (ODTUG) and at the Midwest Oracle Users Group. Bill has developed considerable expertise in setting up, managing, and tuning Designer/2000 repositories as well as managing large user count OLTP databases.

The scripts referenced in this paper can be downloaded from http://www.megsinet.net/~bschott/analyze_scripts.html and he can be contacted via E-Mail: schottw@dteenergy.com or bschott@megsinet.net or Phone: 313/235-3566

Supporting Scripts

Figure 1 – Analyze_ctl.ddl

Figure 2 – Analyze_Trend.ddl

Figure 3 – Analyze_setup.sql

Figure 4 – Analyze_schema.sql

Figure 5 – Sample Analyze_trend query and results

Figure 6 – Another Example – Table Statistics Over Time

create table ANALYZE_CTL (� Schema varchar2(30) not null,� Set_Name varchar2(15) not null,� Table_name varchar2(30) not null,� Num_Rows Number(9),� Est_pct varchar2(3),� Trend varchar2(1) Default 'Y',� Action varchar2(1) Default 'C')� Tablespace Tools storage (initial 12k next 30k);

Comment on Column ANALYZE_CTL.Trend is � 'Y = Update Trend Table; D = Trend, then delete stats; N = No Trending';

Comment on Column ANALYZE_CTL.Action is 'C = Compute; E = Estimate;';

Create Public Synonym ANALYZE_CTL for ANALYZE_CTL;

grant insert, select, update, delete on analyze_ctl to SYS;

grant insert, select, update, delete on analyze_ctl to SYSTEM;

alter table ANALYZE_CTL� add constraint ANALYZE_CTL_PK� Primary Key (Schema, Set_Name, Table_name)� using index� Tablespace Tools � storage (initial 12k next 30k);

alter table ANALYZE_CTL�ADD (Constraint One_Must_Be_Null� Check (Num_Rows is NULL or Est_Pct is NULL));

Comment on table ANALYZE_CTL is�'This table controls the operation of the Analyze_Schema process.';

create table ANALYZE_TREND �(Schema varchar2(30) not null,� Table_name varchar2(30) not null,� Trend_Date DATE not null,� NUM_ROWS Number,� BLOCKS Number,� EMPTY_BLOCKS Number,� AVG_SPACE Number,� CHAIN_CNT Number,� AVG_ROW_LEN Number)� Tablespace Tools storage (initial 256K next 256K);

Create Public Synonym ANALYZE_TREND for ANALYZE_TREND;

grant insert, select, update, delete on ANALYZE_TREND to SYS;

grant insert, select, update, delete on ANALYZE_TREND to SYSTEM;

Comment on table ANALYZE_TREND is�'This table contains historical analysis data for trending purposes';

Rem ***�Rem * analyze_setup.sql will populate the Analyze_ctl table with initial�Rem * values.�Rem * If the table is over 40MB, it will create an entry to Analyze_ctl �Rem * with an est_pct of 15.�Rem ***� set verify off heading off pagesize 0

Rem Get Schema Owner and Set to Setup

define Owner = '&1'

define Set_Name = '&2'

select 'Preparing to Setup Set &&Set_name for Schema &&Owner' from dual;

select 'Entering Tables to "Compute"' from dual;

insert into ANALYZE_CTL � 	(Schema,Set_Name,table_name,Action,for_clause)� select UPPER('&&Owner'),UPPER('&&Set_Name'),segment_name,'C',� ‘for table for all indexed columns for all indexes’�	from dba_segments d� where owner = UPPER('&&Owner')� and segment_type = 'TABLE'� and bytes < 40000001� and NOT EXISTS (� Select 'x' � from analyze_ctl a� where a.schema = d.owner� and a.table_name = d.segment_name� and a.set_name = UPPER('&&Set_Name'));

select 'Entering Tables to "Estimate at 15%"' from dual;

Insert into ANALYZE_CTL � 	(Schema,Set_Name,table_name,est_pct,Action,for_clause)� select UPPER('&&Owner'),UPPER('&&Set_Name'),segment_name,'15','E',� ‘for table for all indexed columns for all indexes’�	from dba_segments d� where owner = UPPER('&&Owner')� and segment_type = 'TABLE'� and bytes > 40000000� and NOT EXISTS (� Select 'x' � from analyze_ctl a� where a.schema = d.owner� and a.table_name = d.segment_name� and a.set_name = UPPER('&&Set_Name'));

commit;

set feedback on verify on heading on pagesize 23

Rem * analyze_schema.sql will perform an Analyze on all tables and�Rem * indexes owned by the owner specified in Argument 1 and listed in�Rem * the Set specified in Argument 2, using the spoolfile (argument 3)�Rem * ****NOTE: In order to run this script, you must run ANALYZE_SETUP�set serveroutput ON size 600000 verify off feedback off termout off trimspool on�spool &3		--name of spool file to use

DECLARE� T_Owner VARCHAR2(30);� Subset VARCHAR2(30);� Stats_phrase VARCHAR(40);

 CURSOR Subset_Tables IS� SELECT table_name, trend, action, est_pct, num_rows, for_clause� FROM analyze_ctl a WHERE a.Schema = T_Owner� AND a.Set_name = Subset AND a.Action in ('E', 'C')ORDER BY table_name;� Set_rec Subset_tables%ROWTYPE;

BEGIN� T_Owner := UPPER('&1'); -- Get Schema Owner to Analyze� Subset := UPPER('&2'); -- Get Schema Set to Analyze

 DBMS_OUTPUT.PUT_LINE ('Prompt Preparing to Analyze '||T_Owner||� ' Using Set: '||Subset);

FOR Set_rec in Subset_tables LOOP

 DBMS_OUTPUT.PUT_LINE� ('Prompt Analyzing table '||T_Owner||'.'|| Set_rec.table_name);

IF Set_rec.Action = 'C' THEN DBMS_OUTPUT.PUT_LINE ('Analyze table '||� T_Owner||'.'||Set_rec.table_name||' compute statistics ');

ELSIF Set_rec.Action = 'E' THEN� IF Set_rec.Num_Rows is NOT NULL THEN� Stats_Phrase := TO_CHAR(Set_rec.Num_Rows) || ' Rows';� ELSIF Set_rec.est_pct is NOT NULL THEN� Stats_Phrase := Set_rec.est_pct || ' percent';� ELSE Stats_Phrase := '25 percent'; -- If neither is specified

 END IF;� DBMS_OUTPUT.PUT_LINE ('Analyze table '||T_Owner||'.'||Set_rec.table_name||� ' Estimate statistics sample '|| Stats_phrase);� END IF;� DBMS_OUTPUT.PUT_LINE (' '||Set_rec.for_clause||';'); -- For Clause

IF Set_rec.Trend != 'N' THEN DBMS_OUTPUT.PUT_LINE � ('INSERT into Analyze_Trend (Schema, table_name, Trend_Date, '||� 'Num_Rows, Blocks, Empty_Blocks, Avg_Space, Chain_Cnt, Avg_Row_Len)');

 DBMS_OUTPUT.PUT_LINE('SELECT Owner, table_name, SYSDATE, Num_Rows, '||� 'Blocks, Empty_Blocks, Avg_Space, Chain_Cnt, Avg_Row_Len');

 DBMS_OUTPUT.PUT_LINE ('FROM DBA_TABLES WHERE Owner = '''||T_Owner||� ''' and Table_name = '''||set_rec.table_name||''';');

 IF Set_rec.Trend = 'D' THEN DBMS_OUTPUT.PUT_LINE ('Analyze table '||� T_Owner||'.'||Set_rec.table_name|| ' delete statistics;');

 END IF;� END IF;�END;�/�spool off�set verify on termout on feedback on

start &3	--name of spool file to use

exit

-- The query will report the chain count history for any tables which�-- which contained chained rows as of the last analyze�Prompt Display the last 90 days history for any tables with chained rows

select a1.table_name, a1.trend_date, a1.num_rows, a1.chain_cnt�from analyze_trend a1�where table_name in� (select table_name from dba_tables t� where t.chain_cnt > 0)�and a1.trend_date > trunc(sysdate)-91�order by table_name, trend_date;

TABLE_NAME TREND_DAT NUM_ROWS CHAIN_CNT�------------------------------ --------- ---------- ----------�EMPLOYEES_ON_DUTY 31-MAY-98 511 2�EMPLOYEES_ON_DUTY 31-MAY-98 599 2�EMPLOYEES_ON_DUTY 31-MAY-98 671 2�EMPLOYEES_ON_DUTY 31-MAY-98 763 2�EMPLOYEES_ON_DUTY 31-MAY-98 845 2�EMPLOYEES_ON_DUTY 31-MAY-98 897 2�EMPLOYEES_ON_DUTY 31-MAY-98 916 2�EMPLOYEES_ON_DUTY 31-MAY-98 970 4�EMPLOYEES_ON_DUTY 01-JUN-98 1033 9�EMPLOYEES_ON_DUTY 01-JUN-98 1056 16�EMPLOYEES_ON_DUTY 01-JUN-98 1064 20�EMPLOYEES_ON_DUTY 01-JUN-98 1073 21�EMPLOYEES_ON_DUTY 01-JUN-98 1106 30�EMPLOYEES_ON_DUTY 01-JUN-98 1130 35�EMPLOYEES_ON_DUTY 01-JUN-98 1243 37�EMPLOYEES_ON_DUTY 01-JUN-98 1523 37�EMPLOYEES_ON_DUTY 01-JUN-98 1794 40�EMPLOYEES_ON_DUTY 01-JUN-98 1871 46�EMPLOYEES_ON_DUTY 01-JUN-98 2022 55�EMPLOYEES_ON_DUTY 01-JUN-98 2050 58�EMPLOYEES_ON_DUTY 01-JUN-98 2143 66�EMPLOYEES_ON_DUTY 01-JUN-98 2249 67�EMPLOYEES_ON_DUTY 02-JUN-98 2707 157�EMPLOYEES_ON_DUTY 02-JUN-98 2859 162�EMPLOYEES_ON_DUTY 02-JUN-98 3453 200�EMPLOYEES_ON_DUTY 06-JUN-98 4775 365

column empty_blocks heading "Empty|Blocks"�column avg_row_len heading "Avg Row|Length"�column avg_space heading "Avg|Space"�column Used heading "Blocks|Used"

select trend_date, num_rows, blocks, empty_blocks,� blocks - empty_blocks Used, avg_space, avg_row_len�from analyze_trend�where table_name = UPPER('&Table')�order by trend_date�/

 Empty Blocks Avg Avg Row�TREND_DAT NUM_ROWS BLOCKS Blocks Used Space Length�--------- ---------- ---------- ---------- ---------- ---------- ----------�03-AUG-97 3417307 26899 3820 23079 3437 99�10-AUG-97 3696283 29064 1655 27409 3395 99�17-AUG-97 4275546 33549 12530 21019 3291 99�24-AUG-97 4599671 36069 10010 26059 3159 100�31-AUG-97 5045338 39514 6565 32949 3184 100�07-SEP-97 5150006 40339 5740 34599 3166 100�14-SEP-97 5692867 44539 1540 42999 3159 100�21-SEP-97 6023629 47099 14340 32759 3155 100�28-SEP-97 6412570 50114 11325 38789 3176 100�05-OCT-97 6643216 51904 9535 42369 3149 100�12-OCT-97 7005210 54714 6725 47989 3092 101�19-OCT-97 7776296 60754 685 60069 2895 102�26-OCT-97 10352350 80324 11835 68489 3052 100�02-NOV-97 12225899 93134 14385 78749 2831 100�09-NOV-97 12928886 97949 9570 88379 2761 100�16-NOV-97 13437560 101424 6095 95329 2697 100�23-NOV-97 13787056 103819 3700 100119 2651 100�30-NOV-97 14198629 106629 890 105739 2589 100�08-DEC-97 14668568 109839 13040 96799 2508 101�16-DEC-97 15207806 113529 9350 104179 2498 100�21-DEC-97 15630417 116564 6315 110249 2399 101�29-DEC-97 15865840 118169 4710 113459 2399 101�04-JAN-98 16337252 121399 1480 119919 2387 101�12-JAN-98 16974177 125754 12485 113269 2372 101�18-JAN-98 17929453 132274 5965 126309 2329 101�25-JAN-98 18285272 134699 3540 131159 2325 100�01-FEB-98 18643292 137169 1070 136099 2286 101�08-FEB-98 17698180 138034 205 137829 2998 101�15-FEB-98 18270197 138034 205 137829 2585 101�22-FEB-98 18881804 138034 205 137829 2136 101�01-MAR-98 20290906 147379 6220 141159 2025 101�08-MAR-98 20601578 149509 4090 145419 2017 101�15-MAR-98 21126485 153099 500 152599 2015 101�22-MAR-98 21773706 157524 11435 146089 1985 101�29-MAR-98 22362004 161534 7425 154109 1960 101�06-APR-98 23093674 166554 2405 164149 1925 101�12-APR-98 23348863 168294 665 167629 1921 101�19-APR-98 23673417 170519 13800 156719 1883 101�26-APR-98 24030085 172954 11365 161589 1882 101�03-MAY-98 24570140 176649 7670 168979 1869 101�10-MAY-98 24784027 178114 6205 171909 1871 101�24-MAY-98 25666692 184129 190 183939 1849 101�31-MAY-98 26440555 189444 10235 179209 1794 101�07-JUN-98 26625058 190714 8965 181749 1786 101

