Inside the Oracle Cost Based Optimizer

Richard M. Slavik

S&P Solutions

Abstract:

Oracle Corporation's cost-based optimizer is still an enigma to many, yet it holds the key to great application performance as well as access to many of the newer database objects. This presentation is an in-depth study of the Oracle cost-based optimizer (CBO) - what database statistics affect its decisions and how these decisions affect application performance. Differences between the CBO and rule-based optimizer and the benefits and pitfalls of both are discussed. A detailed analysis of what statistics, database objects and database parameters help the CBO determine query access paths is presented as well as how to use this knowledge to manipulate database and application design to improve performance.

What is the an Optimizer:

As defined by Webster’s New World Dictionary: to optimize means to obtain the most efficient or optimum use of… Oracle, and several other relational databases use a tool called on optimizer to determine the most efficient method to handle DML requests. It is the optimizer’s job to determine what a query is asking for and then choose the best method for retrieving that data. The steps that the optimizer chooses to retrieve the requested data are often referred to as the execution plan for the query. Since Oracle 6 Oracle has included a Rule Based Optimizer (RBO) and with the release of Oracle 7 a Cost Based Optimizer (CBO).

Oracle’s Rule Based Optimizer.

Released with Oracle 6 the rule based optimizer uses an ordered list of access methods and join methods. The list is ordered based on the relative cost of each operation, with fill table scan being the costliest access method and retrieving a single row by ROWID the cheapest. When presented with a query the RBO determines all possible execution plans and their relative cost based on each steps position in the list. The RBO then chooses the least expensive execution plan. There are several drawbacks to the RBO.

· The RBO isn’t overly intelligent. It will process the tables of a multi-table query in the order in which they are specified in the FROM clause of the query. This gives a developer great power in determining how a query will be evaluated, but it requires an understanding of SQL and the data being referenced. This can be particularly detrimental where a lot of Ad-Hoc queries are being written by end users who lack this more in depth knowledge.

· The RBO will always rank execution plans based on their relative cost in the list, regardless of the data stored in the table. This limitation is most apparent in the five row code table with a primary key. If the table is queried and the where clause matches the columns that make up the primary key the RBO will always use the index to retrieve the data even if index access results in more I/O.

· The RBO is eventually going to be removed from the Oracle database server. Oracle has promised it’s customers to include the RBO through the Oracle 8 release of it’s database server, primarily to support legacy systems that have been written to take advantage of the RBO, but they admit that it will eventually be removed from the Oracle server.

· Coding for the RBO is halted. For this reason the RBO will not take advantage of new database features like partitions, star joins or index-only tables. Oracle has stated that the only code changes that will me made to the RBO are corrections in the event that a query returns a false result, or a query locks up while processing.

Oracle’s Cost Based Optimizer:

Released in Oracle 7 the cost based optimizer is an expert system that looks at all possible execution plans for a query and determines their relative cost depending on statistical information collected on the data. Then the execution plan with the lowest cost is chosen and the query is processed. The sequence of the tables that appear in the FROM clause does not effect the execution plan. Oracle will determine what tables to access when based upon each tables statistics. Cost based optimizers have been around for a while. Both RDB and DB2 have very mature cost based optimizers. Despite this more intelligent approach to determining the execution plan based on the data being referenced the CBO suffers from some draw backs as well.

· The CBO has a bad reputation. Oracle’s CBO had a very shaky start, particularly in the earlier versions of Oracle 7. This bad reputation still prevents some shops from implementing the CBO today despite many improvements in the product.

· CBO execution plans for a query may change from release to release. Oracle makes no guarantee about execution plans and the CBO. Enhancements and modifications made to the CBO between releases may cause queries to use different execution plans for better or for worse.

· The application developer and DBA often know much more about the data and how it’s being used than the CBO. Using the RBO this knowledge can be leveraged to outperform the CBO in some situations.

· If table statistics are missing or old the CBO can make bad decisions. If statistics are missing Oracle can only guess what data might be in the table.

· Sometimes the CBO still makes bad decisions.

Determining which optimizer to use:

Any new SQL being generated should be using the cost based optimizer. Any legacy code should be converted to the CBO. Although this may not always be easy or even possible using the CBO should remain a goal for two reasons. The RBO will likely be desupported after Oracle 8 and only the CBO can take advantage of new database objects and access methods. Determining which optimizer will be used to evaluate each query depends on several factors and can be set at either the instance level, session level or query level.

Instance Level:

OPTIMIZER_MODE – This parameter sets the default optimization behavior for the entire Oracle instance. There are four possible settings

· CHOOSE – the default OPTIMIZER_MODE, differs determining which optimizer to use until each query is evaluated. If any table participating in a query has had statistics collected on it’s data the CBO will be used to evaluate the query. For this reason it is essential for all tables in a query to have statistics collected or none of them have statistics collected.

· ALL_ROWS – This setting uses the CBO to evaluate all queries regardless of whether statistics have been collected for any tables participating in the query. Using this value causes the optimizer to choose an execution plan whose goal is the best data throughput. Full table scans and merge joins are weighted higher when optimizing for ALL_ROWS. This would be most valuable for long running batch jobs for example.

· FIRST_ROWS – This setting uses the CBO to evaluate all queries regardless of whether statistics have been collected on any tables participating in the query. This setting optimizes for best response time. Index access and nested loops are weighted higher when optimizing for FIRST_ROWS.

· RULE – Use the RBO for all queries regardless of the presence of statistics.

Session Level:

The optimizer behavior can be set for each session using

ALTER SESSION SET OPTIMIZER_GOAL = Session Optimization Mode
The settings for OPTIMIZER_GOAL are the same settings as those available for OPTIMIZER_MODE and produce the same effect. Setting the OPTIMIZER_GOAL will override the default optimizer behavior set using the OPTIMIZER_MODE parameter.

Query Level:

The optimizer behavior for each query can be influenced using hints. Hints are remarks that the oracle optimizer can evaluate to alter the optimization behavior. Hints must follow the SELECT clause of the query and can be one of two forms

1. --+ hint
2. /*+ hint */

The hints that effect what optimization mode is used are CHOOSE, ALL_ROWS, FIRST_ROWS and RULE. These hints have the same behavior as the instance parameter setting of the same name. Hints will override any optimization behavior set at the instance level or session level.

What the Cost Based Optimizer looks at:

Regardless of the optimizer goal the CBO looks at several statistics when determining what execution plan to use. These statistics, which can be viewed using the DBA_* tables, are collected when the tables and indexes are analyzed. Below are the tables and columns that are updated when the ANALYZE command is used:

DBA_TABLES

NUM_ROWS
BLOCKS
EMPTY_BLOCKS
AVG_SPACE

CHAIN_CNT
AVG_ROW_LEN
SAMPLE_SIZE
LAST_ANALYZED

AVG_SPACE_FREELIST_BLKS
NUM_FREELIST_BLOCKS

Using the statistics NUM_ROWS, AVG_SPACE and AVG_ROW_LEN the CBO can begin to determine how many blocks in the table contain data. This data in conjunction with the column distribution statistics allow the optimizer to determine the most likely size of the result set of rows queried from each table.

DBA_TAB_COLUMNS & DBA_TAB_COL_STATISTICS

NUM_DISTINCT
LOW_VALUE
HIGH_VALUE
DENSITY

NUM_NULLS
NUM_BUCKETS
LAST_ANALYZED
SAMPLE_SIZE

These two tables are included together because they contain the same data. In Oracle 8 the columns NUM_DISTINCT, LOW_VALUE, HIGH_VALUE and DENSITY are included in the DBA_TAB_COLUMNS table only for backward compatibility. A column’s DENSITY is derived using the number of distinct values for the column squared divided by the elements sampled squared. Oracle uses the column Density and NUM_DISTINCT along with NUM_ROWS from DBA_TABLES to predict the number of rows that each data block. LOW_VALUE and HIGH_VALUE also provide the CBO with a limited guess as the to the data distribution. Histograms provide much more accurate information on a table’s data distribution.

DBA_INDEXES

BLEVEL
LEAF_BLOCKS
DISTINCT_KEYS
AVG_LEAF_BLOCKS_PER_KEY
AVG_DATA_BLOCKS_PER_KEY

CLUSTERING_FACTOR
NUM_ROWS
SAMPLE_SIZE
LAST_ANALYZED

All of the statistics that make up DBA_INDEXES are used to help the CBO determine the cost of employing any usable indexes in the execution plan. BLEVEL is B-Tree depth of the index. Each additional level of the index is an additional GET that will have to be performed when the query is executed. The average leaf blocks and average data blocks per key are important statistics the CBO uses to determine how read activity will be required for each key. DISTINCT_KEYS will equal NUM_ROWS for unique indexes. Unique indexes are weighted very heavily in the CBO and are used whenever possible. An indexes CLUSTERING_FACTOR is a value that represents how closely the order of the data matches the order of the indexes. A value of one indicates that the data order very closely matches the order of the index.

DBA_CLUSTERS

AVG_BLOCKS_PER_KEY
HASHKEYS

The average blocks per key is the number of keys that make up the cluster divided by the number of blocks of the cluster. This value is allows the CBO to determine whether reading the entire cluster is more efficient than using the clustering key. HASHKEYS is use only if the cluster is a hash cluster.

DBA_TAB_PARTITIONS & DBA_IND_PARTITIONS & DBA_PART_COL_STATISTICS

These tables contain data equivalent to DBA_TABLES, DBA_INDEXES and DBA_TAB_COL_STATISTICS except these statistics pertain to each individual partition that makes up the partitioned object. These statistics are weighted using the same rules applied to non-partitioned objects with the added benefit of filtering based on partition.

Histograms

The CBO is normally unaware of the actual data that is being accessed. It assumes a fairly even distribution of data across each table. In situations where the data has something other than an even distribution (skewed data) the CBO can make better decisions on which execution plan is most effective. The CBO can make use of height based histograms to identify skewed data. Height based histograms use buckets to represent the distribution of data in a column. Oracle can look at each bucket for a column and it’s end point to determine if the data is skewed and act accordingly. To view information on histograms use DBA_HISTOGRAMS and DBA_PART_HISTOGRAMS.

When to collect statistics:

It depends. The standard stock answer to nearly every turning related question. The CBO can only be effective if it’s using good data to base it’s decisions. To this end some automated statistics collection using ANALYZE should be employed. Tables whose data rarely changes, or only a small percentage changes, don’t require analysis as often. New tables that start out empty but rapidly fill with new data should be analyzed more often to allow the CBO to react to the increased data.

Parallel Processing

Oracle weighs it’s ability to retrieve data from a table in parallel very highly by default. It is possible for the CBO to ignore a good index, which provides excellent filtering, and perform a full table scan in parallel. The initialization variable OPTIMIZER_PERCENT_PARALLEL tells the CBO how to weight parallel processing. This value must be between 0 and 100. The lower the number the more the CBO will favor indexes. The higher the number the more CBO will favor full table scans performed in parallel.

Other factors that influence the CBO:

These initialization parameters also effect what decisions the CBO might make.

· ALWAYS_ANTI_JOIN – If antijoins are permitted this parameter determines what join method will be used. Possible values are NESTED_LOOPS/MERGE/HASH. The default is NESTED_LOOPS.

· BITMAP_MERGE_AREA_SIZE – The amount of memory, in bytes, to use when merging bitmaps retrieved from a range scan of an index. A larger value will increase the likely hood of using bitmap indexes for evaluating range predicates. The default is 1 MB.

· DB_FILE_MULTIBLOCK_READ_COUNT – The number of blocks read in one I/O operation during sequential scans. When this number is higher full table scans will be cheaper. This value should be a limit of DB_BLOCK_SIZE and is constrained by the operating system. The default is 8.

· HASH_AREA_SIZE – This value defines the maximum amount of memory, in bytes, that can be used for hash joins. The larger this value is the more weight will be placed on hash joins when determining what execution plan to use. The default is 2 times the SORT_AREA_SIZE.

· HASH_JOIN_ENABLES – Whether hash joins are permitted or not. The default is TRUE.

· HASH_MULTIBLOCK_IO_COUNT – The number of sequential blocks read in one I/O when processing hash joins. This parameter has similar limits to DB_FILE_MULTIBLOCK_READ_COUNT. A higher value will make hash joins cheaper. The default is 1.

· OPTIMIZER_SEARCH_LIMIT – The maximum number of tables in a query that will have all possible execution plans considered. The higher this number is the longer it can potentially take to build the execution plan for the query. If this number is set too low it can potentially ignore better execution plans. The default is 5.

· PARTITION_VIEW_ENABLED – Permits the use of partitioned views. Partitioned views were an Oracle 7 attempt to provide the same functionality as partitions in Oracle 8. If you have partitioned views convert them to partitions. The default is FALSE.

· SORT_AREA_SIZE – The size, in bytes, used for handling sorts allocated to each program global area or the system global area in a multi-threaded server. A larger value for this parameter will cause large sorts to run faster, as less data will have to be written to the temporary tablespace. As a result merge scans will be cheaper when determining what execution plan to use. The default for SORT_AREA_SIZE is operating system dependent.

· SORT_DIRECT_WRITES – This parameter allows sorts to write directly to disk if ample memory and temporary space exist bypassing the buffer cache. Possible values are AUTO/TRUE/FALSE. Auto performs direct writes when the sort area size is greater than ten times the block size. True allocates additional buffers from memory during each sort. False forces all sort writes to go through the buffer cache. Since this parameter greatly increases the performance of sorts, sort merge joins are more frequent. The default is AUTO.

· SORT_WRITE_BUFFER_SIZE – This parameter determines the size of the I/O buffer to use when performing SORT_DIRECT_WRITES. Increasing this value will make sorts using SORT_DIRECT_WRITES more efficient and sort merges more likely. The default is 32768.

SQL Transformation:

When using the CBO the order the tables are listed in the FROM clause is irrelevant. The CBO will attempt to transform each statement into a more efficient form. As part of determining what execution plan to use the CBO determines which transformations are most efficient as well. By transforming statements and applying statistics about each object being accessed the CBO can often make very good decisions on what execution plans perform best. Below are some of the transformations that the CBO might make to improve the performance of an SQL statement:

· Transform OR into compound queries using UNION ALL – This method will be used if the resultant queries can take advantage of an index access path. The table will be accessed multiple times using the better access path and the results will be combined.

· Transform complex statements into joins. – The CBO will look at complex statements such as sub queries and attempt to transform them into equivalent joins.

· Transform BETWEEN to >= AND <=.

· Transform IN into OR statements. – This might also cause the statement to further transformed into UNION ALL as above.

· Star Transformation – This query transformation is aimed at executing star queries more efficiently. It is designed for star schemas where there is a large number of dimension tables, the fact table is relatively sparse and there will be queries where not all dimension tables will be represented in the predicate list of the WHERE clause. Instead of relying on a Cartesian product and concatenated indexes the star transformation is based on combining bitmap indexes on fact table. This allows the CBO to combine indexes for only those dimensions that are being constrained in the WHERE clause.

View Transformation:

Views can be transformed one of three ways. And the performance varies depending on each method.

1. Merge view text with SQL statement – If the CBO is able it will attempt to merge the text of the view with the SQL statement being optimized. In this method the view name is replaced in the FROM clause with the tables that make up the view and any predicates from the view are added to the WHERE clause. This method typically performs best when accessing views.

2. Merge statement predicates with the view text – If the CBO is unable to merge the view text with SQL statement it will next attempt to apply any predicates from the SQL statement to the view. This will hopefully have the effect of limiting the result set of the view. At run time the view with the additional predicates will be processed and the query will access the result set of the views.

3. View execution – If the view text can not be merged with the SQL statement and no predicates can be applied to the view Oracle executes the view and joins the result set with the SQL statement. This method typically provides the worst performance when accessing views.

Determining what access path Oracle will use:

Oracle has a wide array of methods it can use to retrieve data from each table. The CBO uses the table statistics and the table structure and indexes along with the predicates found in the WHERE clause to determine what access methods to use. The most important factor in determining what method to use is the selectivity of the table based on those statistics and the WHERE predicates. The selectivity of an SQL statement is the percentage of rows expected to be returned versus the total number of rows in the table. A higher selectivity will result in a smaller result set and the CBO will favor index scans over full table scans. Additionally a high DB_FILE_MULTIBLOCK_READ_COUNT or OPTIMIZER_PERCENT_PARALLEL will add weight to performing full table scans. Here are the access methods that Oracle might use:

· Full Table Scan – This method retrieves all records from a table and compares each record to the predicate list in the WHERE clause. Since each block of the table is read sequentially, Oracle can take advantage of multiblock reads.

· ROWID – The fastest table access method. Each records ROWID is made up of it’s datafile and what block in the datafile the row can be found. Each records ROWID is usually determined through an index scan, although other processes do use them.

· Single Row by Cluster Join – If a query contains WHERE predicates that equate each table in a cluster to each other and the predicates guarantee that only one row will be returned a single row by cluster join will be used. The execution plan operation will be TABLE ACCESS and the Option will be CLUSTER.

· Single Row by Hash Cluster Key with Unique or Primary Key – This method is available when all columns of the hash cluster key are listed in equality predicates in the WHERE clause, and the statement guarantees only a single row will be returned. The execution plan operation is TABLE ACESS and the option will be HASH.

· Single Row by Unique or Primary Key – When all columns of a unique or primary key participate in equality predicates in the WHERE clause of a query Oracle may choose this method. Using this method Oracle retrieves a single ROWID for the record using a unique scan of the index. This ROWID is then used to retrieve the data from the table if necessary. When performing a unique index scan the execution plan operation will be INDEX and the option will be UNIQUE SCAN.

· Clustered Join – A cluster join can be used when the WHERE clause predicates equate each column of the clustering key in one table of the cluster to the other. Oracle will use a nested loop to perform this query. The execution plan operation of the inner table will be TABLE ACCESS and the option will be CLUSTER.

· Hash Cluster Key – When all of the columns of the hash cluster key are used in equality predicates in the WHERE clause this method may be joined. Oracle uses the hash function to calculate the hash value. Using this hash value Oracle then access the table. The execution plan operation is TABLE ACCESS and the option is HASH.

· Indexed Cluster Key – When all of the columns of the indexed cluster key participate in equality predicates in the WHERE clause Oracle can take advantage of this method. Oracle retrieves the ROWID of one row using a unique scan of the cluster index. Using this ROWID Oracle can perform a cluster can of the table. Since all rows with the same cluster key are stored together it is only necessary to retrieve the one ROWID. The operation of the execution plan will be TABLE ACCESS and the options in effect will be CLUSTER following a unique scan of the index.

· Composite Index – This method is used when all columns that make up the composite key of the index are used in equality predicates in the WHERE clause. Oracle performs a range scan on the index to retrieve all ROWIDs then access the table using those ROWIDs.

· Single Column Index – This method can be used when the columns of one or more single column indexes are used in equality predicates. Oracle will perform a range scan on each index and merge the resulting ROWIDs. These ROWID’s can then be used to access the table.

· Bounded Range Search on Indexed Columns – This method can be utilized when a predicate uses the column of a single-column index or a portion of a composite index that make up the leading columns of the key. Oracle performs a range scan and accesses the table with the resulting ROWIDs.

· Unbounded Range Search on Indexed Columns – Oracle can take advantage of this method when a predicate uses the column of a single-column index or a portion of a composite index that make up the leading columns of the key. Oracle performs a range scan and access the table using the resulting ROWIDs.

· MIN or MAX of an Indexed Column – This method is available when selecting either the minimum or the maximum value of either the column of a single-column index or the leading column of a composite key index. There can me no additional expressions in the select list. In addition this method is only available when there are no WHERE predicates or a GROUP BY clause. Oracle executes this method using a range scan of the index. Since no additional data is necessary no table access is required.

· ORDER BY on Indexed Column – Oracle can use an index to order the data returned if the ORDER BY clause uses either the column of a single - column index or the leading portion of a composite index. In addition there must me a primary key or not null constraint that guarantees that at least on of the returned columns will have no null values and the NLS_SORT parameter must be set to BINARY. Oracle will perform a range scan to retrieve the ROWIDs in the selected order. These ROWIDs are then used to retrieve the data from the table.

· Fast Full index scan – This method which can now be employed to count the rows of a table is similar to a range scan except that it can take advantage of parallel I/O as well as multiblock reads.

· Bitmap index scan – This method determines what rows match the predicates of the WHERE clause by examining a bitmap that is created for each distinct value of the key. When multiple bitmaps are involved Oracle can use bitwise OR or bitwise AND to quickly determine what rows match. In addition Oracle can use a range scan of an existing index transforming it into a bitmap index for the purpose of using a bitwise OR or AND.

Determining what join methods Oracle will use:

There are four methods Oracle can use to join the row sets returned from each step of the execution plan. Using the statistics and table structure Oracle determines which method will perform best for the given SQL statement. Oracle first looks for unique or primary keys where only one row will be returned. These tables are always used first in any joins. Secondly Oracle looks at the selectivity that can be achieved against each table and uses the join method that works best with that result set.

· Nested Loop Join – When using a nested loop join the CBO chooses one of the tables to be the outer table. For each row in the row set of the outer table Oracle finds all rows in the inner table that satisfy the join condition. The data from each pair is combined and returned as the result set of the join. When determining what table should be used as the outer table the CBO generally looks for the table with the smallest result set. This will result in fewer loops.

· Sort-Merge Join – To perform a sort-merge join Oracle produces the result set from each table and sorts them based on the columns that provide the join conditions. After the data is sorted Oracle merges the two result sets matching each pair of rows where the values of the join columns match. This method is often used when the predicates in the WHERE clause do not provide a high degree of selectivity.

· Cluster Join – Oracle can perform a cluster join only for an equijoin between two tables in the same cluster joining on the clustering key. This is a variation of nested loop as one table is chosen to be the outer table. Then inner table is accessed using the cluster itself since rows from the two tables with the same clustering key are stored together in the table.

· Hash Join – Using this method Oracle performs a full table scan of each table and splits the result set into as many partitions as possible. Oracle then builds a hash table from one of the partitions and uses the corresponding partition in the other table to probe the hash table. If the partition pairs don’t fit into memory they are placed on disk. Oracle uses the smallest partition of the pair to build the hash table and the larger table to probe it. This method only exists for the rule-based optimizer.

· Star Join – This join method is designed to be used in a data warehouse where a large fact table is joined to several smaller dimension tables. The CBO recognizes star joins and can take advantage of the star schema to retrieve data efficiently using the concatenated index of the fact table.

Influencing the Cost Based Optimizer:

It’s not particularly easy to influence the decisions the cost based optimizer is making, particularly when using third party applications or generated SQL. In those situations adding and removing indexes and tweaking initialization parameters are often the only tools at your disposal. For queries that can be modified the best tuning method is trying to rewrite the query to better take advantage of the database. When the SQL statement can be modified Oracle has provided hints that can be embedded into the SQL statement immediately following the SELECT clause to try to influence the CBO. The syntax for using hints was discussed earlier regarding optimizer goals. Below is a list of additional hints that can be employed

Hints for Access Method

· FULL

- Force full table scan

· ROWID

- Force table access by ROWID

· CLUSTER

- Force cluster scan

· HASH

- Force hash scan

· HASH_AJ

- Transform NOT IN subquery into hash antijoin

· INDEX

- Use specified index of indexes

· INDEX_ASC
- Force index range scan in ascending order

· INDEX_COMBINE
- Use combination of bitmap indexes

· INDEX_DESC
- Force index range scan in descending order

· INDEX_FFS
- Force fast full index scan instead of full table scan

· MERGE_AJ
- Transform NOT IN subquery into sort-merge antijoin

· AND_EQUAL
- Force merge of range scans of list of single-column indexes

· USE_CONCAT
- Transform OR predicates in the WHERE clause into compound queries using UNION ALL

Hints for Join Orders

· ORDERED

- Force Oracle to join table in the order they are specified in the FROM clause

· STAR

- Force star plan to be used if possible

· STAR_TRANSFORMATION
- Force Oracle to use star transformation

Hints for Join Operations

· USE_NL

- Use nested loop specifying which table is the driving table

· USE_MERGE
- Force Oracle to join each listed table using a sort-merge

· NO_MERGE
- Restricts Oracle from using sort-merge join

· USE_HASH
- Force Oracle to join specified tables using a hash join

· DRIVING_SITE
- Force query to be executed at a different site

Hints for Parallel Execution

· PARALLEL
- Specify the number of concurrent servers to be used for parallel operation

· NOPARALLEL
- Override PARALLEL specification of the table

· APPEND

- This hint applies to INSERT statements and directs the DBO to append data to the end of the table rather than searching for existing free space

· NOAPPEND
- Override APPEND mode

· PARALLEL_INDEX - Specify the number of concurrent servers that can be used to parallelize index range scans for partitioned indexes.

Miscellaneous Hints

· CACHE

- Place blocks retrieved for the query at the most recently used end of the LRU list

· NOCACHE

- Place blocks retrieved for the query at the least recently used end of the LRU list

· PUSH_SUBQ
- Forces non transformed subquereies to be evaluated as early as possible in the execution plan

Conclusion:

While Oracle’s cost based optimizer isn’t perfect, a careful understanding of the tools it can employ and why it uses them can help handle any frustration it might cause. The first steps that should be employed in tuning any SQL should be first establishing what the CBO is trying to do. Second, by interrogating the catalog for statistics and database structure determine why the CBO is doing what’s it’s doing and lastly making changes and recommendations that can change the behavior of Oracle’s cost based optimizer.

Bibliography:

“Oracle 8 the Complete Reference”, by George Koch & Kevin Loney, Chapter 32, Oracle Press – Osborne McGraw-Hill, 1998.

“Oracle8 Server Tuning”, by Rita Moran, Chapters 7-8, Oracle Corporation, 1997.

“Oracle8 Server Concepts”, by Lefty Leverenz, Richard Mateosian, Steve Bobrowski, Section V Chapter 19, Oracle Corporation, 1997.

About the Author:

Rick Slavik is a Database Administrator with 5 years experience working with relational databases. Originally working with DB2 on MVS he branched into Oracle and is certified in both Oracle and DB2 UDB. His experience with Oracle includes application performance tuning, database design, Oracle web integration and supporting Oracle across large international networks on all of Oracle’s major platforms. He can be contacted via email at rslavik@en.com

Paper #169 / Page 10
Paper #169 / Page 9

