Part 1: Introduction to Object Technology using UML

George J. Trujillo, Jr.

gtrujillo@truparagon.com
Tru Paragon Inc.,

Tru Paragon Inc.: IOUG 1999 Object Series

Part 1: Introduction to Object Technology Using UML

Part 2: Understanding Object Technology in Oracle8i

Part 3: Developing Java Applications in Oracle8i

Part 4: Introduction to Object Orientation and Java for Oracle Developers

This is the first presentation in a four part series on Object technology by Tru Paragon. Tru Paragon is a technical training organization, which focuses on delivering leading edge, high impact Oracle, Java, Unix and Distributed Object technology training. Part one introduces relational technologists to Object technology. Part two discusses different technologies for implementing object-oriented systems in Oracle8i with an emphasis on Oracle products. Part three presents object-oriented implementations in Oracle8i using Java and CORBA/IIOP solutions. Part four is a more detailed presentation to show Oracle developers how to write object oriented applications using Oracle’s JDeveloper to write Java n-tiered applications.

Overview

As organizations take greater advantage of Internet products, compete in global markets, build more complex systems and data warehouses, companies are looking to further enhance their database technologies and software methodologies. Companies want increased flexibility, scalability and maintainability in their systems. Everyone realizes there is no silver bullet. The key is to find a technology to facilitate good design, solid software engineering practices and reduce the technical skill and business knowledge required for the major percentage of developers. Object technology if properly implemented can help companies achieve these goals. This paper will introduce relational technologists to object-oriented concepts and terminology. This paper highlights how object technology is a natural software evolution of good software development practices. The topics will include:

· Why companies are considering object technology

· Software engineering through object technology

· Fundamental Object-oriented concepts

· An introduction to UML

· Object Patterns

· Different types of object models

Why Object Technology now?

There are a number of competitive advantages of software development using object-oriented technology. There are also a number of additional factors moving the industry towards object technology. Some of the these additional factors are:

· Applications have traditionally been developed using functional decomposition. Functional decomposition integrates the business processes into the application. This makes it difficult to make changes or additions without re-engineering major components of a application. Third generation technology (C, Cobol, Fortan,..) worked well when business processes were more stable and software was relatively simple and inexpensive. This is no longer the case. Although RDBMS technology has allowed the centralization of business rules in stored procedures and data triggers there are still significant software development issues with separating business rules and data into separate entities. Object technology offers significant advantages over competing technologies. Companies like Oracle are now integrating new Object technologies into proven and stable database environments.

· The relatively new object-oriented language Java allows true portability across hardware and operating systems. A Java program can be written on one platform and can then run on any other platform that has a Java VM. For example, a Java program can be written on a NT platform and then downloaded to run on a AS/400, Unix, MVS, Mac or any other hardware platform that has a browser. This allows one version of software to run on any hardware platform. Oracle8 now incorporates a Java Virtual Machine, Java stored procedures and triggers, CORBA/IIOP and a native Java compiler and an enterprise Java development tool called JDeveloper. Oracle’s new enterprise Java server will support fast Java programs running in large-scale enterprise environments. Java programs can run on the largest mainframe servers, network computers, palm pilots, cellular phones and yes even toasters.

· Object technology has been available in one form or another for over twenty years. In recent years it has matured significantly due to the evolution of Java, CORBA, IIOP, improvements in network communication and bandwidth, Java Virtual Machines, application servers and leading database base companies such as Oracle who offer enterprise solutions in Java.

· Component based development will allow plug and play software written in COBOL, C, Fortran, PL/SQL and Java to integrate with plug and play software systems. CORBA, IDL and IIOP will allow software objects written in different languages to work together.

· Twenty years ago college students began taking Unix and C classes. Colleges are now teaching object oriented analysis and design, Java and Internet strategies.

· Significant changes in government policies and the growth of the internet has opened new markets and competition that will require companies to make improvements to their approach to software development if they want to remain competitive. Object technology will help companies

· write one version of software for multiple hardware and operating system environments

· use reusable software objects

· reduce maintenance costs while improving flexibility for change

· deploy large scale applications over the internet

Software engineering through object technology

Object technology is often described as a new paradigm for software development. Although it is a new approach to software development, it is important to understand a lot of it is based on good software engineering practices that are implemented in Cobol, Fortran, C and other structured languages. The object-oriented development approach is based on connecting reusable software objects together to build a complete system. One of the goals is to have developers become assemblers of software components instead of having to develop low level lines of code to develop a system from scratch.

Database developers for years have been removing the business rules from the application layer and centralizing them in the database server. These business rules have been put in stored procedures, functions, packages and database triggers. Removing the business rules from the application layer and centralizing them in the server: improves data integrity, enforces security, reduces redundancy and enforces data access and manipulation through the defined business rules. This also allows developers to write code at a higher level of abstraction. With relational technology the data is managed in tables while the business rules are maintained in separate software entities. Object technology combines the data structure and the business rules (functions) into a single entity. This combination of a data structure and the business rules with object technology offers a number of advantages over traditional software methodologies. Some of the advantages are:

· System development from a business perspective to increase the probability of designing the “right” system

· Reducing design time by utilizing object patterns

· System development using solid software engineering techniques

· Data encapsulation

· Improved quality

· Plug and play software component development

· Capability to leverage inheritance and polymorphism in software

· Truly portable distributed business objects

· Development at a high level of abstraction

· Improved maintainability of software systems.

· Software with improved scalability and flexibility

· Reusable and extensible code that is easier to maintain

What is an Object?

Before going further we need to define some basic concepts and terminology. A class is a template definition for creating objects. An object is a real instance created from the class definition. An object is made up of a data structure and the methods (functions) that can be performed on the data. These methods are used to access the data. Consider the following invoice object:

The invoice object is composed of a data structure and the operations that can be performed on the data. This combination of data and methods allow designers to define the data for an object and the operations the object needs to perform. This abstract definition allows an object model to be created containing objects and their relationships for a system. Object models have their own graphical notation similar to entity/relationship graphical notation. Business users will understand the type of data (data structure) for an invoice and what can be done to the invoice data (functions). Object models can help facilitate communications between business and technical people since objects are designed from a business perspective.

Data encapsulation allows data manipulation only through the object’s methods. Requiring all data access through the object’s methods reduces the interdependence on programs using the object. If changes (business rules, optimization, bug fixes, portability, upgrades, etc.) need to be made, the changes are localized to the objects methods. This can minimize the chance of a change having large ripple effects through thousands of lines of code.

We see an object is the natural merging of 3GL(functions) and relational technology (data structures). There are tremendous advantages to combining the data structure and the functionality into a single entity:

· data encapsulation ensures data can only be accessed and manipulated correctly through the API interfaces

· higher data integrity and security by controlling how the data is used through the API’s

· centralizing the business rules and reducing the probability of redundant code

· programmers can perform operations on the data through the API’s without having to know the details

A number of these features can be achieved in 3GL and relational systems but an object provides a natural software container that facilitates and enforces good programming practices.

Introduction to Object-oriented Concepts

A system is considered object-oriented if it supports classification, identity, inheritance and polymorphism. Classification is when different entities with the same attributes and methods are grouped into a single class. A class is the template definition used to create instances of that type. All invoices, students, parts and accounts would each have their own class. Objects are real instances of a class. Real invoices, would be instances of the Invoice class. This is similar to how a record type can be defined in Oracle PL/SQL and then variables of that record type can be created from the type definition. Identity means each object is a unique entity. For example, two car objects might have the same color, features and model but would still be unique objects. Logical primary keys can be used in classes like in tables to facilitate good design.

Inheritance allows one class to inherit the data attributes and methods from another class within the same hierarchy. Role based security in Oracle is a simple form of inheritance. There were tremendous security management advantages to creating roles with a set of generalized privileges that additional roles could inherit from. Object-oriented inheritance is even more powerful because data and methods (application code) can also be inherited. For example, you need to work with employee, customer and vendors.

Inheritance extracts out the common attributes and characteristics of a number of similar entities into a generalized super class definition (Person). The Person super class could be used to generalize all the common characteristics found in employees, customers and vendors. A super class has sub classes inherit its attributes and methods. An inheritance hierarchy defines the relationships between sub classes and the classes they inherit from. Each sub class must be a specialized version of the super class. The Person class would contain the attributes and methods shared by employees, customers and vendors. Then each employee, customer and vendor subtype class would define additional attributes and methods specific for their own class. Each subclass would not contain any of the characteristics defined in the super class unless the sub-class wanted to override the definition defined in a class higher in the hierarchy. Inheritance allows a change to be made in a super class which sub classes inherit. The data attributes and methods in the super class are inherited by the sub classes. This allows the super-class definitions to be reused by the subclasses. Inheritance increases reusability, maintainability and reduces redundant code. Once again the environment helps facilitate good programming practices.

 Polymorphism allows the same operation to be performed differently based upon the object it is working on. Oracle programmers were introduced to the static form of polymorphism with Oracle7’s overloading. Different functions in a package could be invoked dependent on the data type and number of arguments passed to a function. This allows programmers to work with a single mnemonic function name and perform similar operations on different types of data.

 Package.function(string1, string2);
-- perform operation on string data

 Package.function(number1, number2);
-- perform operation on numeric data

 Package.function(date1, date2);

-- perform operation on date data

All instances of a class share the same methods. To invoke a method, the method needs to know which object’s data it is working with. Dot notation similar to a package is used to invoke an object method.

 ObjectName.Method (argumentlist,…);
-- the object name is referred to as the invoking object

In working with employee, customer or vendor entities, you would not want to have large IF statement structures to be used to determine if an operation should run on a customer, employee or vendor. This hard coding would have to be modified every time a new person type is added or deleted. Instead you could perform a dynamic polymorphic operation with a generic function having a person variable as an argument. If you passed the function a customer value, employee value or vendor value, the person variable would then act as if it were a variable of the data type passed for it. This allows the capability to write very generic code and not have to go back and modify existing programs when new subtypes are added or removed from the person inheritance hierarchy. The following contains pseudo code to demonstrate the advantage of using polymorphism.

Create or Replace Procedure ToPerformOperation(--algorithm without polymorphism

 Customer c_variable Default NULL,

 Employee e_variable Default NULL,

 Vendor v_variable Default NULL) AS

BEGIN

 if(e_variable IS NULL and v_variable IS NULL) then

c_variable.print();

 elsif(c_variable IS NULL and v_variable IS NULL) then

e_variable.print();

 elsif(c_variable IS NULL and e_variable IS NULL) then

v_variable.print();

 end if;

END:

 Create or Replace Procedure ToPerformOperation(

-- Pseudocode for a polymorphic algorithm

 Person p_variable Default NULL) AS

BEGIN

 p.variable.print();

END;

A polymorphic algorithm will not have to be modified as the number of person types grows. It is a very generic program with reduced maintenance. If it is called with a variable of type employee, it will execute the employee print procedure. If it is called with a customer variable it will execute the customer print procedure. If it is called with a vendor variable it will execute the vendor print procedure. Polymorphism is supported in Oracle 8.i using Java not PL/SQL.

UML

The object industry has a number of competing object-oriented methodologies. Each methodology has their own definitions, emphasis on different areas of the system and different graphical notations. Three of the leading methodologies (Booch, Rumbaugh and Jacobson) have come together for the purpose of developing an industry standard, the Unified Modeling Language (UML). UML is a graphical language for defining, designing and documenting software systems. UML not only included parts of the Booch, Rumbaugh and Jacobson methodologies, it also includes the best concepts from other methodologies. UML is quickly becoming the defacto standard. The primary object standards group, Object Management Group (OMG) has picked UML as the industry standard. DEC, IBM, HP, Microsoft, Oracle, MCI, Unisys and a number of other vendors are part of the UML consortium. Version 1.0 was released in January of 1997. Oracle has picked UML as the object methodology for Oracle 8. Designer 2.1 introduces UML in the CASE tool. UML’s graphical notation defines cardinality and relationships similar to E/R diagramming. A number of UML design guidelines are the same as in designing data models.

UML defines different diagrams that can be used to represent a system. The different diagrams include:

1. Class diagram

2. Object diagram

3. Component diagram

4. Use case diagram

5. Activity diagram

6. Statechart diagram

7. Collaboration diagram

8. Sequence diagram

9. Deployment diagram

Patterns

For object technology to succeed, systems must be properly designed. It can be difficult to get the time necessary to design a system properly. Object patterns alleviate the time crunch allowing faster design time and more flexible and reusable code. Object patterns use well-known and established relationship patterns like employee-customer-region-dept and order-item-inventory. Object patterns use these defined data patterns to build a design from established data relationships. As the design goes through scenario testing, enhanced functionality can be added. This allows rapid design using well defined and proven patterns as a starting point.

Transitioning to Object Technology

 It is going to take time for organizations to transition to object-oriented development. Object-oriented development projects

· have a greater concentration on analysis and design

· understand business users are the experts and developers must build the system from a business perspective

· use component development techniques to create reusable objects and then assemble them to build a system

· will need to make a investment in training their IT staffs in object-oriented technology and the tools that will be used to develop these systems.

Object-oriented technology does not guarantee that the right system will be built. Object-oriented technology provides good design and software engineering principles and a methodology developed from a business perspective that can be used from initial requirements gathering all the way through to implementation. The benefits of OO are long term if implemented successfully. A object-oriented project must still have a good design, proper project management, technical people with the right skills and enough time to implement the project successfully. As we move to more of a global Internet world, object technology gives organizations additional tools to meet the needs of the 21st century.

INVOICE

id

invoice_date

amount

status

customer_id

getStatus()

getInvoiceDate()

getInvoiceAmt()

getInvoice()

deleteInvoice()

setInvoiceDate()

printInvoice()

…

Person

Employee

Vendor

Customer

Paper 415 / Page 8
Paper 415 / Page 7

