Java Database Access

Matthew E. Gunter

Tactics, Inc

Introduction

Java provides a very attractive development environment to developers. However, Java database access requires more design attention to provide the performance and functionality that developers are used to in PL/SQL. This paper begins with the advantages of Java and a brief discussion of architectural considerations. The remainder of the paper describes the database access methods available in Java such as JDBC and SQLJ. These methods are compared for functionality and performance. In several cases, design approaches are suggested that help to remove limitations associated with a given access method.

Java Advantages

Java represents an attractive option for building applications through its object-orientation, simplicity, rich functionality and portability.

By virtue of having automatic garbage collection (periodic freeing of memory not being referenced) the Java language not only makes the programming task easier, it also dramatically cuts down on bugs. Java provides all of the functionality you would expect from a programming language and then some. One popular feature is the ability to create applets that can be run inside of a browser.

Object-Oriented languages such as Java overcome many design-related problems by enabling model-based software solutions. One example of the power of Object Orientation is being able to efficiently separate common module logic from module-specific logic. Because of inheritance, the common code can be written, tested, and maintained in one location that is automatically a part of all relevant modules rather than duplicated or referenced in each one. Another benefit of Object-Orientation is encapsulation. Encapsulation is the decoupling of the way the data is used from the way it is maintained. A key advantage of such decoupling is that business rules and system rules regarding how data is stored can be coded independently from application logic that determines how the data is used. This results in functional and maintainable systems.

Object-Relational Design

One of the key decisions to be made when designing a database application with Java is how to manage the interaction between the OO (Object Oriented) user-interface and the relational base tables. Carefully considering how classes are mapped to entities is important because it determines the granularity of the interface to the database and the degree that database interaction is encapsulated. These classes are sometimes called proxy classes because they are Java representations of corresponding relational entities. Poor design impacts the users of the relational data. In the case of a poor design, the application level classes would either be faced with too much complexity or to little control in presenting and modifying the data.

Mapping can take several forms. The most obvious way, using a tool such as JDeveloper, is to create a QueryDataset and a GridLayout object for each table or view to be included in the application. Using this approach, however, results in many inefficiencies and poor encapsulation. This means losing many of the OO objectives. For example, because the select, insert, update, and delete statements are implemented automatically, it is difficult to add more complex logic that may be required to enforce system or business rules. Also, if modifications are done elsewhere in the application to the same tables, the logic has to be duplicated. The following figure depicts a database application that takes this approach.

[image: image1.jpg]Application using Select, Insert, Update, and Delete of a base table

This may be fine for small, simple applications, but as the application grows it becomes desirable to funnel the insert, update and delete statements through centralized handlers that are used to access individual tables or groups of tables. This way the system and business rules can be enforced or implemented in one place for the entire application. More importantly, as long as the handler keeps the same interface, the internal logic and table structure can be changed and enhanced without affecting the application logic. The following figure demonstrates this approach.

[image: image2.jpg]Application using a wrapper class to manage access to database tables

This approach is not entirely new. It can also be implemented using PL/SQL packages. A PL/SQL package can be created around each table to centralize the insert, update, delete, lock, and even select logic. For example Designer 2000 does this when it generates the table methods for use in a PL/SQL cartridge application. The following are examples of the “interface” that Designer 2000 creates for a given table.

PROCEDURE ins(cg$rec IN OUT cg$row_type,

 cg$ind IN OUT cg$ind_type,

 do_ins IN BOOLEAN DEFAULT TRUE);

PROCEDURE upd(cg$rec IN OUT cg$row_type,

 cg$ind IN OUT cg$ind_type,

 do_upd IN BOOLEAN DEFAULT TRUE);

PROCEDURE del(cg$pk IN cg$pk_type,

 do_del IN BOOLEAN DEFAULT TRUE);

PROCEDURE lck(cg$old_rec IN cg$row_type,

 cg$old_ind IN cg$ind_type,

 nowait_flag IN BOOLEAN DEFAULT TRUE);

PROCEDURE slct(cg$sel_rec IN OUT cg$row_type);

Java offers much more flexibility in creating these wrapper classes. Because PL/SQL packages cannot be “instantiated” multiple times, they can only represent the table as a whole. Java, on the otherhand, enables each row to be translated into an object. Rows from multiple tables may even be combined into a meaningful composite object. This is an important advantage of using Java and is especially helpful in situations where many dependencies must be managed for the underlying data.

The following class is an example of how one might encapsulate and centralize the maintenance of a base table with Java. Each instance of this class would represent one individual.

class Individual {

.

.

.

private int id;

private String name ;

private java.sql.Timestamp lastUpdateDate;

//construct the object with a where clause

public Individual(string whereClause) { }

//Use setter methods to modify “column values”

public int getId(){ }

public void setId(int id) { }

public String getName(){ }

public void setName(string name) { }

public java.sql.Timestamp getLastUpdateDate(){ }

public void setLastUpdateDate (java.sql.Timestamp lastUpdateDate) { }

// actually execute transaction when the following methods are called

// note: update is used here for insert too

public void update(){ }

public void delete(){ }

}

JavaSoft’s Java Blend product, as well as others, provides automated and sometimes even dynamic mapping of tables and rows to classes. Using such a product each row of a table is translated into an instance of the appropriate class with each row’s column corresponding to an object attribute.

Java Database Access Technologies

In order to implement the designs discussed above it is necessary to execute code that selects data and carries out database transactions. This likely involves the use of JDBC or SQLJ. The JDBC API will be described first. SQLJ, which is a Java language extension, depends heavily on JDBC and will be discussed separately.

JDBC

Except for the Java Access Classes of Personal Oracle Lite, JDBC is the Java API for interacting with Oracle databases as well as others. It is a low-level API and is cumbersome compared to the transparent database access provided by PL/SQL. JDBC does offer the advantage of supporting numerous databases and a rich set of features for gathering database metadata. Additionally, JDBC easily supports the issuing of dynamic SQL statements (i.e. any statement not defined at compile time). It also provides fine-grained control over the execution of SQL statements.

Generic JDBC contains six main classes: DriverManager, Connection, Statement, PreparedStatement, CallableStatement, and ResultSet.
It is important to keep in mind that the Oracle JDBC drivers define new classes that provide additional methods to those specified by JDBC (e.g. OracleStatement). Several of these feature extensions will be discussed below.

DriverManager

The DriverManager class is the management layer of JDBC. It handles the registration of JDBC drivers and the creation of all connections. All methods in the DriverManager class are defined static, affecting the class as a whole. The primary methods used from this class are registerDriver() and getConnection(). In addition, setLoginTimeout() may also be used to increase the timeout if connecting over a WAN or other slow connection.

You open a connection to the database with the getConnection call, which takes a URL. The connection URL depends on the JDBC driver you want to use:

Oracle Driver
Example
<database> Argument

JDBC OCI8:
Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@<database>","scott", "tiger");
Either an entry in tnsnames.ora or a SQL*net name-value pair.

JDBC Thin:
Connection conn = DriverManager.getConnection ("jdbc:oracle:thin:@ <database>","scott", "tiger");
Either a string of the form <host>:<port>:<sid> or a SQL*net name-value pair.

Different JDBC drivers implement JDBC features differently, provide support for different database-specific features and exhibit different levels of performance. In addition, only certain drivers are considered “all Java”. Because of these differences, the decision of which JDBC driver to use for an application should take performance and deployment requirements into consideration. The Thin driver utilizes Java sockets to connect directly to Oracle by providing its own implementation of Oracle’s SQL*Net. Because it is 100% Java, this driver is platform independent and requires no additional installation or support files on the client side(e.g. SQL*net)

Connection

The connection object represents a connection with the database. The primary methods used from this class are createStatement(), prepareStatement() and prepareCall(). Connections should be created in their own thread. This prevents the database interaction from interfering with the rest of the application. Also, the connection has methods for setting transaction isolation level and for turning auto commit off
 (therefore requiring explicit commit or rollback.)

While connections would be closed by the garbage collector automatically, manually closing a connection is recommended to free database resources more promptly.

Statement, PreparedStatement, and Callable Statement

These three classes are the heart of JDBC and are used to issue statements to the database.

Name
Definition
Example:

Statement
Used to send standard SQL statements to the database(Insert, Update, Delete, Select).
statement = connection.createStatement ();

sqlString = "SELECT /*+ RULE*/ b.name FROM customer b WHERE b.unid = "
+ customerId;

ResultSet rset = statement.executeQuery (sqlString);

while (rset.next()){...}

statement.close();

PreparedStatement
Should be used when you want to submit a statement to the database many times with different bind variables.
PreparedStatement pstmt = conn.prepareStatement

("select b.name FROM customer b WHERE b.unid = ?");

pstmt.prepareInt(1, customerId)

ResultSet rset = pstmt.executeQuery();

 while (rset.next()){...}

pstmt.close();

CallableStatement
Used to call database stored procedures and functions.
CallableStatement cstmt = conn.prepareCall

("begin " +

" find_item(23,?); " +

"end;");

// This function returns a RefCursor

// Register ? as a RefCursor

cstmt.registerOutParameter(1, OracleTypes.CURSOR);

cstmt.execute();

//assign the RefCursor to a ResultSet

ResultSet cursor = ((OracleCallableStatement)cstmt).getCursor(1);

 while (cursor.next()) {....}

cstmt.close();

The primary methods used from the statement class are the executeQuery() and executeUpdate(). The cancel() method can be invoked from a different thread to abort a statement’s execution.

A prepared statement provides better performance than merely rebuilding the query because the prepared statement does not need to be reparsed and compiled by the database. Callable statements provide better efficiency than standard statements because code is executed in the database and just the result is returned.

ResultSet

The result set object is a table that contains the rows returned from a query. The primary methods used are next(), close() and the various methods for getting the current row’s values such as getString() and getBigDecimal(). The use of the result set is somewhat cumbersome. The SQLJ iterator is much more convenient, due to its similarity to a PL/SQL cursor. Iterators will be discussed more below.

The following example shows how these core JDBC classes work together.

public String getCustomerName (String customerId)

{

.

.

.

 try

 {DriverManager.registerDriver (new OracleDriver ());

 Connection connection = DriverManager.getConnection(

 "jdbc:oracle:thin:@host_nt1:1521:ORCL", "user", "pwd");

 // Create the SQL statement

 statement = connection.createStatement ();

 sqlString = "SELECT /*+ RULE*/ b.name FROM customer b WHERE b.unid = " +

 customerId;

 // Execute the query to get the result set.

 ResultSet rset = statement.executeQuery (sqlString);

 // loop through all rows.

 while (rset.next())

 { name = rset.getString (1); }

 // Close the statement

 statement.close ();

 }

 catch (SQLException e)

 { }

 return (name);

 } // getCustomerName

Several important result set enhancements are added to JDBC in Version 2. Scroll-sensitive result sets and updateable result sets. Scroll sensitive result sets are dynamic (they are filled as they are scrolled) and support backwards scrolling through the result set. Updatable result sets provide “Select...For Update” functionality.

OracleType Extensions

The Oracle JDBC drivers (both the Oracle “thin” and “OCI” JDBC drivers) support the Oracle ROWID and REFCURSOR types. The mapping of these types to Java supported types are shown below.

Oracle RDBMS Datatype
Oracle Java Type Code

ROWID
OracleTypes.ROWID

REFCURSOR
OracleTypes.REFCURSOR

Coding suggestions

· All JDBC related code should be implemented in one or more separate classes. Connection establishment and statements should execute in their own thread to avoid interfering with other parts of the application such as the GUI. Connections should be shared as much as possible to minimize the redundant allocation of resources for the application and the database.

· Use callable statements as much as possible. Use prepared statements for repeated queries where only bind variables change.

· Take advantage of row Pre-fetching. Standard JDBC receives the result set of a query one row at a time. Each row involves a network round trip to the database. To set the row Pre-fetch for an individual statement object or the default Pre-fetch for all statements created on a connection use the OracleStatement.setRowPrefetch or the OracleConnection.setDefaultRowPrefetch, respectively.

· Likewise, take advantage of execution batching to optimize performance for groups of insert, update, and delete statements that are issued together. Standard JDBC makes a round trip to the database whenever a prepared statement's executeUpdate method is executed. To optimize this, use OraclePreparedStatement.setExecuteBatch to set a prepared statement’s batch size. Therefore, whenever the executeUpdate method of a prepared statement is invoked, JDBC queues an execution request. When the number of queued requests reaches the batch size, JDBC sends them to the database for execution. The sending of the batch can also be done manually by calling the OraclePreparedStatement.sendBatch method. JDBC automatically executes the statement's sendBatch method whenever the connection receives a commit request or when the statement or the connection receives a close request.

· Since non-integer numeric Oracle datatypes are retrieved as instances of the BigDecimal class, calculation operations on such columns are more difficult to program and are very slow. Therefore, the coding of complex or numerous calculations using this data type could affect performance.

SQLJ

SQLJ is a standard for embedding SQL in Java programs. It is similar to embedded SQL in other languages such as C or C++. Ultimately all SQLJ code is translated to JDBC calls. It can be implemented as a preprocessor or built into the compiler. The main advantage to using SQLJ is productivity. Errors can be detected at compile time that otherwise would be detected only at runtime. SQLJ accomplishes this by maintaining a connection with the database at compile time in order to perform schema and type checking.

To use SQLJ to process a simple query that returns a single row, declare a Java variable for each select-list item and bind variable. Put the SQL query statement inside a SQLJ statement:

 ...

 Float bonus;

 int individualID = 202201;

 ...

 #sql { SELECT SUM(Compensation) INTO :bonus FROM Compensation

 WHERE Type=’BONUS’ and Individual = :individualID };

 ...

SQLJ handles connections with the notion of a connection context. All SQLJ programs have a defaultContext, in which connection-handling code is created by the compiler and is transparent to the programmer. The connection context is actually a class that contains all the relevant connection details and actually creates the connection. If multiple contexts are required by the application they can be explicitly created.

//declare new context classes for obtaining employees and their salaries

 #sql context SalContext;

//Instantiate the context classes

 SalContext salCtx = new SalContext(Conn);

An iterator is an important SQLJ construct that defines a Java class. Unlike a PL/SQL cursor, an iterator allows the set of rows to be handled as an object (it can be used as a method parameter).

Like a PL/SQL cursor, iterators let you access the result set of a query. There are two kinds of iterators: positional iterators and named iterators. Iterators provide a convenient Java solution for handling rows from the database.

The following example demonstrates how SQLJ can be used with JDBC to leverage the best of both approaches.

 import Java.sql.*;

 #sql iterator Customers(String cname, double sales); //Define a Named Iterator class
 class CustomersInterface

 {

public String printCustomerSales (String customerId)

{

{DriverManager.registerDriver (new OracleDriver ());

 Connection connection = DriverManager.getConnection(

 "jdbc:oracle:thin:@host_nt1:1521:ORCL", "user", "pwd");

 // Create the SQL statement

 statement = connection.createStatement ();

 sqlString = "SELECT /*+ RULE*/ b.name, b.sales" +

 "FROM customer b WHERE b.unid =" + customerId;

 //Instantiate the new strongly-typed SQLJ Iterator
 Customers custs = new Customers(stmt.executeQuery(sqlString));

 while (custs.next()) {

 System.out.println(custs.cname() + " bought " + custs.sales());

 }

 custs.close();

 stmt.close();

 conn.close();

 }

An important consideration when using SQLJ is the sharing of connection contexts, mentioned above, and execution contexts. Execution contexts are similar to connection contexts but while connection contexts can be safely shared between threads, execution contexts should not be shared.

An execution context is associated either explicitly or implicitly with each executable SQL operation appearing in a SQLJ program. The following is an example of an execution context being supplied explicitly as an argument to the SQLJ statement.

 ExecutionContext execCtx = new ExecutionContext();

 #sql (execCtx) { DELETE FROM Customers WHERE Sales < 100 };

If an explicit connection context is also being used, both may be passed as arguments to the SQL operation as in the following examples.

 #sql (connCtx, execCtx) { DELETE FROM Customers WHERE Sales < 100};

Conclusion

Combined with traditional PL/SQL techniques and careful design, Java can be leveraged to build functional and easily maintained database applications. Java facilitates implementing clean OO designs that were difficult or impossible with PL/SQL alone. The integration of Oracle and Java is possible, primarily through JDBC and SQLJ. While JDBC and SQLJ are both more involved than merely using PL/SQL, their nuances can be mastered relatively quickly. The advancement of Java-based products and tools and the language itself will undoubtedly broaden the appeal and applicability of this technology and its use with the Oracle database.

References:

Advanced Java Development for Enterprise Applications by Clifford J. Berg, Prentice Hall PTR 1998

Thinking in Java by Bruce Eckel, Prentice Hall PTR 1998

JDBC Database Access with Java by Hamilton, Cattell, and Fisher, Addison-Wesley 1997

Building an Oracle-Java Application by William A. Wimsatt and Sowrirajan Venkatesan, ODTUG Technical Journal, December 1998.

Utilizing Java Solutions For Oracle with JDBC by Chris Bradley, Robert Amy, presented at SEOUG ‘98

� AutoCommit is ON by default.

v

