Oracle 8 Partitioning

Gus Bengochea

Tactics, Inc.

Disclaimer

This document is intended to be presented in its original and complete form and should not be modified by entities other than the author. All of the material contained within this document are overviews and should not be deemed to contain all information needed on any specific topic. It is intended to assist in the understanding of Oracle Partitioning.

This document is not intended to train anyone on how to do Oracle Partitioning. Please see the formal documentation and manuals for a more detailed description on any of the features or concepts described in this document. The readers may use this document to assist themselves in the design of there databases: however, Tactics is not to be held liable for typography errors, conceptual errors, out-of-date information or any difficulties encountered as a result of using this document.

This document is presented in good faith to all. The author assumes no responsibilities to provide subscriptions to this document as it grows, is updated, or is otherwise changed. This document will be distributed at the discretion of the author.

Where Did Partitioning Come From?

We all know that Oracle is the fastest and best database on the market today, right? If this is true why do we need another option to think about. Believe it or not there are some specific issues that partitioning solves besides giving DBAs another marketable skill, as if we need another one. Up until a few years ago most databases were in the low gigabyte range with most people considering a large database to be in the 50-100 gigabyte size. In the past few years we have seen a tremendous growth in database size due in part to the increase in customers with DSS Systems. Companies want to give users more information for analysis to make decisions. To do this more data needs to be available. This creates the need to keep more data in databases. Customer needs are now dictating that databases need to grow to multi-terabyte proportions. Although an Oracle7 database can grow to these sizes theoretically, in practice there are scalability problems. For instance, with large tables index fragmentation becomes a major issue. Rebuilding indexes on massive tables can take hours causing down-time that companies can’t afford. As tables grow update functions become slower. Maintainability issues such as backups, recoveries and data loads can no longer fit in processing windows. Also, with Oracle7 are performance issues caused by limited parallelization capabilities.

Oracle 8 to the Rescue?

Can Oracle solve the issues we all face with supporting VLDBs? Oracle’s solution to the VLDB issue is “Divide and Conquer”. Instead of attempting to make the database support massive pieces of data, it appears Oracle has decided to provide the ability to physically divide the pieces and still address them as one logical unit. The ability to partition tables and indexes makes operations traverse fewer blocks increasing performance. Partitioning also allows Oracle8 to provide the ability to parallelize DML making data loads and other update functions faster. Maintenance functions can be run on smaller sets of data. That is a table partition can be off-lined and worked on while the rest of the table is still accessible.

All of this sounds great but does it really work? For the most part it does but there are limitations that hopefully will be improved on in future releases (i.e. Oracle8I). For example, Oracle’s partitioning strategy is very limited and only allows sequential partitioning. The optimizer is limited in its recognition of partitioning and when to eliminate unneeded partitions.

What is Partitioning?

Partitioning by definition is the division of a large object into smaller pieces. Within Oracle partitioning is the division of tables and indexes into more manageable pieces. Figure 1 below shows a simplistic view of partitioning.

Traditional

 Partitioned

Figure 1.

The object on the left is non-partitioned and the object on the right is partitioned. The traditional object demonstrates how an Oracle7 table appears. The Partitioned object shows how an Oracle8 table can now appear. Logically the two objects act the same but physically they are different. The partitioned object can change physically without impacting the other pieces. A piece can be added (green piece) and be associated immediately or a piece can be physically removed (red piece) and the remaining pieces are unaffected.

Partitioning General Information.

Both Tables and Indexes can be Partitioned (usually both are done). Partitioning is based on one or more fields in the table. The “partition key” has a 16-column maximum and must have upper and lower limits specified. Oracle’s optimizer recognizes partitions and through “partition elimination” can make queries more efficient. Partition elimination works sometimes. As with the early releases of the optimizer the early releases of the Oracle 8 optimizer and partition elimination are not optimal.

All partitions must have the same LOGICAL attributes such as columns and constraints. Partitions can have different PHYSICAL attributes such as tablespaces, storage, pctfree, etc. If no storage parameters are specified partitions will use the default storage for the create table command (for both table and index partitions). Backup and recovery can be done by partition, including exports. You cannot partition tables that are part of a cluster. Partitions can’t contain LOB’s. Partition keys cannot be modified if modification causes partition change. An oracle error will occur.

Partition ranges are limited to the values less than clause. This means that partitioning can only be done sequentially. For example, you cannot partition a state field by its geographical region. To do this an additional key of region would need to be added or surrogate keys would need to be used. Using surrogate keys brings us back to the issue of partition elimination since most users will not query using a surrogate key.

Partitioning plays a big part in Oracle8’s new parallelization capabilities. With the release of Oracle 8 DML (insert, update and delete statements) can now be run in parallel. When planning to use Parallel DML (PDML) there are some issues to consider. When running parallel operations only one slave can do work per partition. For example, on a 10 partition table with parallel set to 12 only ten slaves will be utilized. You cannot run multiple slaves within a partition. Also, there is a maximum of 64,000 partitions per table or index.
Table Partitioning.

Although Oracle now supports partitioning it does not mean that we will want to setup all tables as partitioned. Partitioned tables have overhead that traditional tables do not incur such as partition probing. As stated earlier, the columns of a partitioned key can not be updated if it moves the row to a different partition. This limits which columns can be used for partitioning.

A tables partition strategy is very important and should be determined by the applications that are using the table. This goes against traditional database design. Normally databases are designed for application independence. This is why we normalize data. By designing a table’s physical characteristic to how a specific application will access and manipulate the database we may impact performance of other applications. This is why it is important to first ensure that partitioning is appropriate and second to ensure that the tables partitioning strategy is correct.

Index Partitioning.

Oracle8 supports both traditional and partitioned indexes. Traditional indexes work the same as they did in Oracle7 so we will not discuss them here. Basically there are two kinds of partitioned indexes, global and local. Partitioned indexes can be either prefixed or non-prefixed. Prefixed indexes are indexes that begin with the partition key from the table it is associated with. Non-prefixed indexes are indexes that do not begin with the partition key of the associated table. Storage parameters can be explicitly defined for each partition of the index. If no storage parameters are explicitly defined the default tablespace is the same as the related table

Choosing an Index Strategy.

As with any Oracle database in Oracle8 your indexing strategy will be the number one success factor with application performance. Your indexing strategy will determine the level of flexibility within your database and application. When attempting to define your indexing strategy consider the following in your strategy:

· the type of access or access paths that will be used

· the performance needed

· the availability and maintainability requirements

· parallel operation requirements

All of these factors will play a part in your indexing strategy. In the past sacrifices were made between performance and maintainability. You could never have it “…faster, better, cheaper”. By utilizing partitioned indexes performance does not need to interfere with maintainability. Choosing the right “mix” of indexes (i.e. global vs. local and prefixed vs. non-prefixed) will prove to be the biggest challenge when building a database using partitioning.

Global Partitioned Indexes.

Global indexes work similarly to traditional indexes but can be partitioned. Typically global indexes are not equipartitioned. They are identified by using the keyword GLOBAL. Global Indexes can be either unique or non-unique. The highest value partition must be able to contain the highest allowable value within the table. This can be done using the maxvalue parameter for the highest level partition. Note that if a global index is equipartitioned (i.e. prefixed with the associated tables partition key) the optimizer will not recognize this and will not eliminate partitions from a query. Global indexes must be prefixed. A non-prefixed index acts the same as a traditional index so it does not add value and actually will impede performance due to more partition probes trying to retrieve data.

Local Partitioned Indexes.

Local indexes have a one-to-one relationship with the table partitions they are associated with. The index partitions are not affected by operations done on unrelated table partitions or other index partitions. Local partitioned indexes help reduce downtime for loads, database backup, database recovery, etc. Local partitioned indexes are identified using the LOCAL keyword when creating the index. Local partitioned indexes can be either prefixed or non-prefixed.
Local Prefixed Index.

Local prefixed indexes must be indexed on the leftmost columns of the tables partition keys. Oracle will automatically locate all entries in the correct local index partition. The LOCAL keyword must be used. Prefixed indexes are good for implementing data locality. The optimizer is aware of the relationship between the table and index. This allows the optimizer to implement partition elimination for faster data retrieval.

Local Non-prefixed Index

Local non-prefixed indexes are not prefixed with the table partition key. Local non-prefixed indexes also must use the LOCAL keyword. They can only be unique if the partition key is part of the index key. Local non-prefixed indexes can not do partition elimination, forcing queries to read all index partitions. Maintenance operations (i.e. off-line partition) on any of the associated table’s partitions effectively make the index unusable (although index is not marked unusable). This occurs because a query against a table using a non-partitioned index may still try to read that partition. If this occurs the user will receive an Oracle error.

Local Prefixed vs. Non-prefixed Indexes.

When creating each table’s index strategy within a database, decisions on using local prefixed and local non-prefixed indexes will need to be made. Remember, Local prefixed indexes are always more desirable than non-prefixed indexes. Although local prefixed and non-prefixed indexes both support partition independence in theory the reality is only prefixed indexes are truly partition independent. Also, partition elimination only works with prefixed indexes.

Parallel DML & DDL

Parallelization can now work on DDL and DML. The benefit of parallelization is performance. The performance of any parallel process is determined by the number of processes spawned, the number of CPUs on the server, the number of disks the table or index resides on and the number of partitions for the partitioned object. Because of this it is important to be prudent when setting the degree of parallelization.

Parallel DML must be enabled manually. For example,
“alter session enable parallel dml;”. For queries or Select statements parallelization works with partitioned or non-partitioned objects. For Insert…select statements parallelization works with partitioned and non-partitioned tables. For Delete and Update statements paralleization works with partitioned tables only. For Insert, Delete and Update there is no parallelism within a partition.

Parallel DDL can be done on a create table … as select … if the table being created is partitioned. Partitioned indexes can be created in parallel. With partitioned indexes the maximum degree of parallelization is equal to the number of partitions in the index. The analyze table or analyze index commands can now be done in parallel on a partitioned table or index. However it must be done manually by running multiple analyze commands concurrently (up to one for each partition).

Partition Syntax.

Create Partitioned Table Syntax.

CREATE TABLE employee

 (employid number,

 periodid number,

)

PARTITION BY RANGE(periodid)

 (PARTITION jan97 VALUES LESS THAN (2)

 TABLESPACE emp_01,

 PARTITION feb97 VALUES LESS THAN (3)

 TABLESPACE emp_02,

 ...

 PARTITION dec97 VALUES LESS THAN (MAXVALUE)

 TABLESPACE
emp_12);

Alter Partitioned Table Syntax.

ALTER TABLE employee DROP PARTITION jan97;

ALTER TABLE employee ADD PARTITION jan98;

ALTER TABLE employee SPLIT PARTITION jan97 AT

 (01-16-1997) INTO

 (PARTITION jan1597,

 PARTITION jan3197);

ALTER TABLE employee RENAME PARTITION jan1597 TO jan97;

Create Global Partitioned Index Syntax.

CREATE INDEX employee_i ON employee

 (periodid, regionid)

GLOBAL

PARTITION BY RANGE (periodid)

 (PARTITION jan97i VALUES LESS THAN (2),

 PARTITION feb97i VALUES LESS THAN (3),

 PARTITION dec97i VALUES LESS THAN (12)

) ;

note: The optimizer will not recognize this as equipartitioned.

Create Local Prefixed Index Syntax.

CREATE INDEX employee_i ON employee

 (periodid, regionid)

LOCAL

PARTITION BY RANGE (periodid)

 (PARTITION jan97i TABLESPACE jan97i,

 PARTITION feb97i TABLESPACE feb97i,

 PARTITION dec97i TABLESPACE dec97i) ;

Create Local Non-prefixed Index Syntax.

CREATE INDEX employee_i ON employee

 (regionid)

LOCAL

 (PARTITION jan97i TABLESPACE jan97i,

 PARTITION feb97i TABLESPACE feb97i,

 PARTITION dec97i TABLESPACE dec97i) ;

note: Table is partitioned by periodid

New System Views.

There are several new catalog views associated with partitioning. The views follow Oracle’s standard views with user_, all_ and dba_ prefixes. Below is a list of the new views related to partitioning.

· (user, all, dba) _part_tables

· (user, all, dba) _part_indexes

· (user, all, dba) _part_histograms

· (user, all, dba) _part_col_statistics

· (user, all, dba) _tab_partitions

· (user, all, dba) _ind_partitions

· (user, all, dba) _part_key_columns

Performance Test Results

The following sections are the results of tests run to help better understand Oracle partitioning and how it can be implemented. The tests were run on Sun Ultra 2 with 2 200MHz CPUs and 512M of memory. The Database had 8k blocks with a 120m SGA with 100m DB buffer. The database consisted of 3 tables: REGION- 5 rows, PERIOD- 12 rows, EMPLOYEE- 5,000,040 rows w/row length of 100 bytes. The partitions were striped across 6 drives. The tables were loaded using a simple PL/SQL script. Note that the PL/SQL scripts ran 15% faster on Oracle8 than on Oracle7. This test was not designed to determine optimal performance but to compare features in a consistent environment.

The following are the results from the performance tests against the Oracle7 and Oracle8 databases. There was one set of tests executed against a 7.3.3 database and three sets of tests executed against an Oracle 8.0.3 database using various index strategies.

The first set of Oracle8 tests was executed against tables that were not partitioned. The second set of tests (denoted as Oracle8 non-partitioned) was executed against a partitioned employee table where the partition key was periodID. These tests (denoted as Oracle8 partition A) used the period.month column in the period table to determine the correct period. The third set of Oracle8 tests (denoted Oracle8 partition B) was also executed against a partitioned employee table with periodID as the partition key. However, these tests used employee.periodID (the partition key) to determine the correct period.

The results revealed that the Oracle7 queries executed noticeably more slowly for the two table and three table joins, as well as the range scan of month < 7 than the Oracle8 non-partitioned tests. The Oracle8 queries against the non-partitioned employee table using the IN clause executed noticeably more slowly than Oracle7. The results are listed in the remaining sections.

Test Results- Query One

SQL> select count (*) from employee with degree 1;
Rows Returned:
 5,000,040

Oracle Release/Version

Elapsed Time

Oracle 7

00:00:55.09

Oracle 8 non-partitioned:
00:01:14.77

Oracle 8 partitioned A:

00:00:52.32

Oracle 8 partitioned B:

00:00:57.83

Oracle 8 part. B w/index 8:
00:01:42.75

Test Results- Query Two
SQL> select count (*) from employee a, period b, region c

where a.periodID = b.periodID and

a.regionID = c.regionID and a.periodID = 1;

Rows Returned:

416,670

Oracle Release/Version

Elapsed Time

Oracle 7

00:01:13.29

Oracle 8 non-partitioned:

00:01:05.31

Oracle 8 partitioned A:

00:00:12.04

Oracle 8 partitioned B:

00:00:12.51

Oracle 8 part. B w/index 8:

00:00:03.38

Test Results- Query Three
SQL> select count (*) from employee a, period b, region c

where a.periodID = b.periodID and

a.regionID = c.regionID and a.periodID in (3, 5, 9);

Rows Returned:

1,250,010

Oracle Release/Version

Elapsed Time

Oracle 7

00:01:18.11

Oracle 8 non-partitioned:

00:03:05.79

Oracle 8 partitioned A:

00:00:34.92

Oracle 8 partitioned B:

00:01:09.05

Oracle 8 part. B w/index 8:

00:00:10.04

Test Results- Query Four

SQL> select count (*) from employee a, period b, region c

where a.periodID = b.periodID and

a.regionID = c.regionID and a.periodID < 7;

Rows Returned:

2,500,020

Oracle Release/Version

Elapsed Time

Oracle 7

00:01:29.75

Oracle 8 non-partitioned:

00:01:10.73

Oracle 8 partitioned A:

00:01:08.24

Oracle 8 partitioned B:

00:00:49.39

Oracle 8 part. B w/index 8:

00:00:20.98

Paper #118 / Page 8
Paper #118 / Page 7

