

Oracle8I and Java

Thomas Kurian

Oracle Corporation

February, 1999

�
Why is Java important?

The Internet is rapidly evolving from a static, stateless, information exchange medium to a dynamic, transactional medium that offers new opportunities for companies to lower their cost structure, grow their customer base, and extend their enterprise through close partnerships with their suppliers and customers. Recognizing these opportunities, leading edge customers are attempting to build and deploy enterprise applications on corporate intranets and the Internet. The Internet however is not enterprise ready today. It is difficult to manage Internet content, to build and deploy applications that access this content, and to run these applications with excellent service. Application developers need to learn an enormous number of languages, tools, different types of servers, and middleware to build Internet applications.

Oracle offers Internet developers a simpler way to build, deploy and manage Internet applications. We believe that Internet content should be managed in one place, a database server, that applications should be written to open Internet standards to operate on that content, and that applications should be deployed not on many “fat” clients but on a small number of highly scalable, high performance application servers and database servers that are professionally managed. Internet clients access these applications and Internet content via standard Internet protocols such as HTTP and IIOP.

Java is the language of the Internet - independent software vendors, value-added resellers, and corporate I/T organizations are building Internet applications in Java. To provide Java application developers with an Enterprise-class infrastructure on which to deploy their applications, Oracle has had a strategic development project underway for nearly three years. It has come to fruition with the release of its Oracle8i database server. With the release of 8i, Oracle provides Java developers with a robust infrastructure to build and deploy a multi-tier application, programming the client, middle-tier and database-tiers all in Java. Developers need to learn only a single language and a single tool set to develop their complete application.

What is Oracle’s Java Strategy?

Oracle has a two-part strategy for Java: offer an enterprise-class Java server platform to run Java applications and an enterprise tool suite and programming interfaces to target this platform.

An Enterprise Class Java Server Platform: Oracle offers two Java execution environments - Oracle8i and Oracle Application Server. Both server’s share a common development model with common APIs, and a common deployment and management framework allowing Java developers to easily partition application logic across tiers of a multi-tier architecture.

Oracle8i Java VM: Oracle8i provides developers with a best-in-class, general purpose Java server platform on which to deploy enterprise applications. It was designed to meet five objectives:

Speed: For both transaction processing and decision support applications;

Scalability: To support very large numbers of conversational Java sessions;

Reliability, Availability, Serviceability [RAS]: To be tightly integrated with the Oracle8 database server to provide 7 x 24 availability with advanced features such as efficient execution on clustered hardware and failover.

Manageability: To lower the total cost of ownership by being easy to manage; and

Secure: To provide the high levels of security that Oracle database users are familiar with.

Any Java program can be run on Oracle8i's Java Virtual Machine. It supports three programming models: Java stored procedures, Enterprise JavaBeans and CORBA servers. Any Internet client can directly access Oracle8i using HTTP and IIOP; programmers can also extend the server with arbitrary communication protocols using Oracle8i's general purpose mechanism that scalably supports virtually any presentation

Oracle Application Server: OAS’s Java cartridge and facilities such as JCORBA and JWeb will interoperate with and share a number of common services with the database’s Java facilities.

Tools and Programmatic APIs: In addition, Oracle provides application developers with a rich set of Java tools and APIs to simplify building applications to this platform.

Programmatic APIs: Recognizing that an Internet computing platform must seamlessly combine ubiquitous SQL data with Java, Oracle offers two different programming interfaces for Java programs to access SQL data uniformly across tiers: JDBC and SQLJ (embedded SQL in Java). Oracle offers three different JDBC drivers for client-server, thin client, and mid-tier Java programs as well as an embedded JDBC driver for Java stored programs. Oracle has also worked closely with a number of other software vendors - IBM, Tandem, Sybase, Informix, and Javasoft - to develop a standard way to embed static SQL statements in Java programs. SQLJ provides a more productive and higher level API that complements JDBC.

Development Tools - JDeveloper: Oracle’s JDeveloper is a standard GUI-based Java development environment. Version 2.0 will provide a number of facilities supporting SQLJ, Java stored procedures, Enterprise JavaBeans, and CORBA servers. In the near future, it will also combine UML-based object-oriented modeling with business-component generation.

Why did Oracle build a Java VM?

Currently no enterprise class Java servers exist, an untenable situation given how important enterprise applications are becoming. There are three major reasons for this situation. First, the Java language is challenging, requiring automatic storage management, language-level multi-threading, loosely coupled dynamic loading, and a number of miscellaneous features at odds with scalability and performance. More importantly, though, the first generation of Java VMs have naturally focused on the needs of single-user systems (for example, lightweight, good performance for dynamically downloaded applets, and GUI-driven execution) rather than the enormous throughput, performance (for long-running, preinstalled applications), and reliability required for mission critical, transaction-oriented, business applications. Finally, there is a matter of perspective. Java VM implementations have traditionally required developers to write multi-threaded servers in Java (using its socket and language-level thread concepts) rather than providing a robust, multi-threaded server platform that simply runs business applications scalably (without requiring the advanced multiprogramming concepts implied by the former). Oracle8i’s Java VM addresses exactly these problems.

What were Oracle’s design objectives?

A small set of design principles has guided the development of Oracle's Java products:

Simplicity: In many ways, Java is a pithy C++. Java programmers should see simple, orthogonal APIs exposing only essential concepts.

Scalability and Robustness: Internet computing depends upon highly scalable, reliable Java servers. Rather than reinvent a server architecture in Java, we've chosen to adapt and embed Java within a proven, scalable execution environment. This has required a ground-up rethinking of traditional Java VM design, but has yielded support for many thousands of concurrent Java sessions on readily available server hardware.

Location Transparency: Generally, the Java language and APIs should be identical across all tiers of the enterprise. This frees developers from making decisions about where code runs at design time, instead allowing flexible reconfiguration at deployment time.

Natural SQL Accessibility: As Java moves from a client novelty into large-scale, mission critical servers, the importance of simple, comfortable, low-overhead SQL access cannot be overstated. We've consciously chosen not to hide the character of SQL data access from Java programmers, but instead developed preprocessing technology and API's to make SQL access a simple, natural matter for Java programmers.

Standards Compliance: Rather than invent APIs specific to Oracle technology, we've taken a open approach, supporting 100 percent of all applicable standards (for example, the JLS, ANSI SQL, JDBC, SQLJ, CORBA, and Enterprise JavaBeans), constraining our desire to add value to providing the best implementations of these standards and simple, clearly identified extensions where we believe standard APIs lack important functionality.

key architectural features of Oracle’s Java VM

�From the point of view of a server-based Java application developer, the major architectural components of Oracle’s Java VM include:

Server integration: Oracle’s Java VM takes full advantage of the proven, highly scalable multi-threaded server implementation of the database that provides the Java VM with an embedded TP-Monitor environment.

Advanced, server-oriented memory management: It includes a novel, server-oriented memory manager and garbage collection system which maximizes throughput and robustness.

High performance native compilation: Oracle’s VM includes a completely new native code compilation technology which will achieve CPU performance significantly faster than standard Java VMs in the market.

Server Integration

Since the release of Oracle7, Oracle has supported a highly scalable, TP-monitor-like capability called Multi-Threaded Server (MTS) into which we have integrated Oracle’s Java VM (see Figure 1). The basic purposes of MTS are to: (1) provide for discrete address spaces to handle physical network endpoints, converting inbound and outbound messages to scalable virtual circuits; (2) put all conversational (session) state into shared memory accessible from a pool of worker threads (mapped to platform-dependent OS threads or processes); (3) place immutable data structures (various runtime execution state including globally named PL/SQL and Java programs) into shared memory (once per database instance) to maximize scalability; and finally (4) provide for cheap, per-call memory which is lost at the end of processing for each call (message as defined by the presentation layer). With Oracle8i, we integrate a Java VM and runtime into MTS worker threads. The resulting configuration:

Places Java session state (the transitive closure of each concurrent user’s static variables over their references) into per-client shared memory, giving users the illusion of having their own “virtual machine”;

Puts most immutable Java objects (such as bytecode vectors and constant pool data) into named shared memory;

Utilizes per-call memory as the allocation space of a modern generation scavenging garbage collector; and

Generalizes the MTS listener, dispatcher, and virtual circuit code to allow Java programs to provide general purpose protocol handling for arbitrary, user-defined protocols. Oracle8i uses this infrastructure to provide native support for HTTP, IIOP, Internet Mail protocols (IMAP4, SMTP, POP3) and other protocols including FTP.

The net benefit of all of this transparent technology is to reduce per-user memory requirements for typical, stateful Java sessions to between 80-150 KB, depending upon the number and nature of the Java libraries used, regardless of the protocol used to access the session. This is dramatically smaller than the 3-6 MB required to execute a more traditional Java VM, and is incredibly flexible and extensible. Oracle8i is the industry’s first truly scalable, general purpose Java server.

� EMBED Word.Picture.6 ���

Figure 1: Multi-Threaded Server Architecture

�

Server-Oriented Memory Management (mman)

Oracle’s Java VM includes a unique, high-performance automatic storage system that conforms to and is tuned for the multi-threaded server’s memory model, but remains completely transparent to the Java programmer. Figure 2 depicts the three basic durations, and six basic object spaces managed by its memory manager - mman. At runtime, the Java VM (and native compiler) implement both C and Java stacks associated with Java automatic variables. Mman implements a modern generation-scavenging new space for fast allocation and high-performance on short-duration calls, with tenuring to a mark-and-lazy-sweep managed old space for managing larger or longer-lived objects. We have adapted pointer-tagging techniques from Lisp and Smalltalk to enhance the performance of common low-level memory management operations. Ultimately, at top-level call boundaries, surviving new space and old space objects are tenured to session duration memory (shared by all worker threads that embed the Java engine, to allow arbitrary scheduling by the multi-threaded server dispatcher). Finally, mman provides for immutable space of indefinite duration associated with RDBMS library units that are Java classes. These objects include the runtime structures necessary for the execution of Java code, plus provably immutable user-defined objects. Such objects have indefinite duration, because they may be unloaded at any time and are shared among users, maximizing scalability.

The net benefit of our memory management architecture is high scalability (as measured by session-duration memory requirements) coupled with high performance (as measured by the portion of Java CPU cycles dedicated to memory management).

� EMBED Word.Picture.6 ���

Figure 2: Memory Hierarchy�

Native Compilation

Contrary to early impressions, Java is not inherently slow to execute, but is amenable to a wide range of compilation strategies. Oracle8i’s Java VM includes a native compiler tuned for the needs of server applications – quite distinct from those of a client. Server code tends to be longer lived and more throughput critical than client code, for which just-in-time (JIT) dynamic compilation has proven effective. Essentially, in the server environment, we're willing to invest more CPU resource into producing highly efficient code than comparable JIT technologies which must amortize the cost of compilation over a much shorter duty cycle. Additionally, the Oracle RDBMS is currently ported to an extremely wide range of hardware/OS platforms. Oracle is not in the increasingly arcane business of back-end code optimization and generation. For these reasons, we've provided native compilation via the translation of Java binaries (since source is not always available) to an intermediate representation that can be efficiently manipulated and translated to a portable subset of ANSI C source text. That source text is consequently dynamically compiled to platform-specific binary code by a target C compiler and dynamically linked directly into the server in a form of DLL or a shared library.

The net benefit of native compilation - in early tests we have run at Oracle, the native compiler has demonstrated improved Java execution performance between 15 to 40 times compared to interpreted code, To maximize availability, we ship the Core JDK classes and a collection of Oracle-specific core server-side Java frameworks packaged in a form of prebuilt native code DLLs. User code and extensions such as beans and cartridges will be compiled to native code and loaded incrementally, by an embedded, runtime version of the compiler, in a fully transparent manner. By leveraging these unique aspects of server-side Java execution Oracle, we have been able to demonstrate compiled performance several times faster than current Java VMs and only a small factor less than an optimized C program. In the future, we plan to incorporate state of the art runtime profile-guided adaptive recompilation techniques, which we believe will ultimately produce performance of perhaps better than half the speed of optimized C. All told, Oracle8i’s Java VM can handle extremely large amounts of both high- and low-level Java code.

HOW DO YOU program this Server?

Oracle8i's VM is a general-purpose Java VM; any Java application can be run on it. It supports three different programming models:

Database stored procedures, triggers and methods: Oracle8i allows traditional database programmers and SQL-oriented clients of the RDBMS to develop Java stored procedures.

Enterprise JavaBeans: Oracle8i furnishes a transaction server platform for distributed Java components called Enterprise JavaBeans.

CORBA servers in Java: Oracle8i also allows distributed systems developers to implement CORBA servers in Java on the database’s Java VM.

Java Stored Procedures

Stored procedures allow users to program the database by adding business rules to extend SQL. Java programs can be stored and executed in the Oracle database as Java stored procedures. Such procedures may use JDBC or SQLJ to access data. Because they execute in the database server, SQL access is much faster than when the data must be retrieved from the server to a Java VM on another machine. Java stored programs in Oracle8i can be written in standard Java or in Java with embedded SQL statements (SQLJ). Java stored programs run in a variety of contexts:

User-defined functions and stored procedures are called within SQL queries, allowing the stored procedure programmer to directly extend SQL with Java

Triggers are stored procedures that are tied to a particular table or view and execute when that table or view is changed. All five types of Oracle triggers can be implemented in Java.

Object-relational methods allow users to add behavior to SQL Object Types in Java.

� EMBED Word.Picture.6 ���

Figure 3: Using Java stored procedures

Figure 3 shows that Java stored programs can be invoked from any database client including JDBC, SQLJ, Developer/2000, OCI, ODBC and any other. They support the standard JDBC mappings between SQL and Java types. They also support access to new kinds of database data, including Binary Large Objects (BLOBs), Character Large Objects (CLOBs), and Structured Types (also known as SQL Object Types). Java stored programs allow users to use an open programming language to program the database server. They conform to open ANSI/ISO standards. Several relational database vendors are working together to ensure that Java stored procedures are portable across databases, by specifying the way that Java stored procedures are installed in a database and published to make them callable in SQL statements.

Enterprise JavaBeans and CORBA Servers

Naturally, interest in a robust, scalable, high-performance Java environment executing within the address space of a universal server extends well beyond the traditional stored procedure community. To ensure the widest possible use, we've embedded key components of a pure Java-based CORBA 2.0 compliant ORB to truly open up the Oracle database. Since CORBA IIOP is the line protocol for CORBA and for a coming version of RMI, we're effectively enabling direct object-oriented access to an exploding array of open systems.

To enable IIOP to the database we first provide an alternate communication channels to the server process(es). Adding support for a new communication channel required changes in all levels of the communication stack. Oracle8i supports configuration parameters enabling the server to open new listener ports associated with arbitrary, user-defined protocols. The server delegates all processing of these new connections to Java classes. When a connection is made on these ports, or when new data is available for reading, the server simply calls predefined Java entrypoint. The Java entrypoint called by the server is passed a java.net.Socket object and the code can read and write any data it desires to handle any protocol it wants. In effect, this lets programmers teach new communication protocols to the server by providing it Java code which safely and efficiently (thanks to the native compiler) implements them.

Our second step was to provide a Java interpreter for the IIOP protocol. To do this efficiently, we have embedded a pure Java ORB of a major CORBA vendor (Visigenic) and repackaged its Java IIOP interpreter to run in the database. As Oracle8i is a highly scalable server, we've only required essential components of the Visigenic IIOP interpreter: a set of Java classes that decode the IIOP protocol, find or activate the relevant Java object, invoke the method specified in the IIOP message, and write the IIOP reply back to the client. We do not use the ORB’s scheduling facilities instead using the Oracle multi-threaded server for session creation and dispatching. This provides an economical and very efficient way to handle IIOP messages scalably in the database. On top of this underlying infrastructure, we support two programming models:

Enterprise JavaBeans (EJBs): EJBs give Java application programmers a very convenient and highly productive component model for server-side business logic facilitating application code-reuse and multi-tier application development. Oracle8i provides a highly scalable and high performance execution environment for EJBs while complying with the EJB 1.0 Specification. It supplies a number of EJB services including a Java Transaction Service (JTS) API via the embedded JDBC driver which has been extended to support JTS-visible transactions. The JTS provides transactional properties to EJB components on the Java VM. It exposes a Java Naming and Directory Interface interface (JNDI interface) to any industry standard Lightweight Directory Access Protocol (LDAP)-enabled directory service. EJB components in the server can be placed in the directory service from which they can be accessed via JNDI. Additionally, it provides a stringent security framework using Internet standard security mechanisms such as SSL over IIOP for encryption, coupled with traditional database authentication and multiple layers of access control.

CORBA Servers: Distributed systems developers can use the same infrastructure used for EJBs to deploy CORBA Servers implemented in Java. The Java VM provides a CORBA Object Transaction Service (OTS) and also exposes a standard COSNaming interface. Oracle8i provides an Object Adapter for persistent CORBA Objects; it serves as a registry of CORBA Objects published in RDBMS and helps locate and load CORBA Objects upon initial activation by CORBA clients. We also provide a number of features that make it easy for Java programmers to develop CORBA Services including Caffeine, a direct Java to IIOP mapping which eliminates the need for IDL definition, support for Objects by value and extensible structs, java2iiop, idl2java, and java2idl, which make application development very simple. Figure 4 illustrates how Enterprise Java Beans and CORBA objects can be used in Oracle8i.

�

Figure 4: Using Enterprise Java Beans and CORBA

WHY SHOULD YOU USE ORACLE’s PLATFORM?

Any Java developer building a server-oriented Internet or Intranet application in Java should exploit Oracle8i's Java platform because of the many important benefits it offers. Some of the major benefits are standards compliance, excellent performance and scalability, access from any client, portability to a huge range of operating system platforms, and the ease with which you can develop, deploy and manage the platform.

Standards Compliant - 100 Percent Pure Java

Oracle is committed to ensuring that all of our Java products comply with standard Java specifications. Any standard Java program can be moved and executed on Oracle’s Java VM for better performance and scalability. The Java VM complies with the JDK 1.1.6 specification, supporting standard Java source, executing standard Java bytecodes, and embedding the Javasoft bytecode compiler. It supports all the standard JDK libraries (save the user-interface manaement elements of AWT and the applet APIs). All of our APIs comply with open standards: JDBC 1.22 and 2.0, SQLJ 1.0, EJB 1.0, and CORBA 2.0.

Optimized Performance and Scalability

Oracle’s Java VM provides a significant number of performance and scalability optimizations that make it a very efficient platform on which to deploy enterprise Java applications. For transaction processing applications, it is several times faster than standard Java VMs. From a scalability point of view, it is an order of magnitude more scalable than other Java VMs due to its sophisticated memory manager.

Accessible from any client

Java programs in the database can be directly accessed from essentially any client: any Internet client or any traditional, client-server database client. Oracle8i supports a number of open Internet protocols including HTTP, IIOP, secure HTTP, and IIOP via SSL. Enterprise Java Bean and CORBA components can be invoked from any Internet browser, any CORBA client, pure Java clients via RMI over IIOP, and D/COM clients via a D/COM to CORBA bridge. Further, Java stored procedures and triggers are callable from any database client: JDBC, SQLJ, ODBC, OCI, Developer/2000, and any other. The combination of zero administration thin clients and a centralized highly scalable and reliable server leads to a significantly lower cost and higher availability computing solution.

Open Systems Portability - Write Once, Run Anywhere

The Java VM integrated with Oracle8i is a fundamental element of Oracle’s strategy to provide its customers and partners with a ubiquitous, cross-platform server environment for Java. Because the Java VM is integrated in the Oracle8i database server, it is ported by Oracle to nearly 90+ different hardware and operating system platforms. Application developers now have a uniform Java server environment fulfilling Java’s promise of “Write Once, Run Anywhere.”

Easy to Develop, Deploy and Manage

There are three important ways in which Oracle8i’s Java facilities simplifies management of an enterprise application architecture:

Easy to Develop: The Java facilities in the server are seamlessly integrated with Oracle’s JDeveloper Java development tool which provides a number of simple and easy-to-use wizards to build and deploy Java applications easily on Oracle8i. It provides integrated support for embedded SQL in Java, Java stored procedures, Enterprise JavaBeans, and CORBA servers.

Easy to Deploy: All of the facilities described - the ORB, Java VM, and database server - are installed as a single install and configured to run out of the box.

Integrated Management: Oracle Enterprise Manager provides a rich set of management services for centralized administration of a network computing environment coupled with simple, easy-to-use, GUI interface and wizards.

Mission Critical Reliability

Oracle’s Java VM provides developers with an unmatched level of reliability, availability, serviceability [RAS], manageability, and security - all fundamental requirements for Java servers in a mission-critical environment. Oracle8.0 and 8i have a number of advances, including Transparent Application Failover, Parallel Server improvements, a new fault recovery architecture, and online backup, recovery, and reorganization - all features that allow them to provide 7x24X365 availability. Oracle8i's Java facilities provide Java programmers with enterprise levels of quality of service.

�Summary

Oracle8i represents a revolutionary new breed of product: an Internet information server aimed squarely at the needs of Internet computing. It combines enterprise scale support for SQL data (the shape of the Internet’s data) and Java programs (the language of the Internet’s behavior), in a highly integrated, robust, easy-to-use package. It will simplify how you build Internet applications and make you more productive as you seek to Internet enable your enterprise.

