Oracle 8.I and Java Virtual Machine do you care?

Don Tornquist

TUSC (The Ultimate Software Consultants)

It is simple idea: Software code that works just about everywhere -- from the smallest devices to supercomputers. Java technology is widely regarded as revolutionary, because it was designed to let applications become portable across many operating systems and communicate with one another much more easily than ever before.

Oracle has embraced the Java language and architecture with growing support for the Java standard for writing code and deploying multi-tiered applications.

The subject of this paper is the Oracle 8i and the Java Virtual Machine that it contains.

Exactly what is the Java Virtual Machine?

Oracle8i was designed to support how Internet applications are developed, deployed and managed. One of the major components to support this strategy is the Java Virtual Machine.

The Oracle8i Java Virtual Machine is a fast and highly scalable and is integrated with the database kernel to provide an efficient execution platform for Java programs. It was designed specifically to address three challenges – performance, scalability and reliability.

Key Architectural Features of Oracle's Java VM

Three primary architectural components make it an efficient server platform.

1. An advanced server-oriented memory manager to improve the scalability of Java programs

2. A high-performance native compiler to speed up the execution of Java programs

3. A generalized protocol framework to allow Java programs to be accessed directly from a variety of Internet clients

Server-Oriented Memory Management System

The Oracle database has for many years supported a highly scalable server called the MultiThreaded Server. Using the existing MultiThreaded Server architecture Oracle has integrated the JVM. The JVM includes a unique, high-performance memory manager that conforms to and is tuned to the multithreaded server's shared memory model while remaining completely transparent to the Java programmer. It allocates and frees memory in chunks called object memories.

There are three different types of object memories with different lifetimes and degrees of sharing across users:

1. Shared memory: The JVM puts immutable Java objects (such as metadata, bytecode vectors and constant pool data) into shared memory initialized once and shared across users.

2. Session Memory: It places Java session state (the transitive closure of each concurrent user's static variables over their references) into per-client shared memory, giving users the illusion of their own “virtual machine.”

3. Call Memory: Finally, it uses per-call memory as the allocation space of a modern-generation, scavenging garbage collector.

The net benefit of these sophisticated shared-memory mechanisms is to reduce per-user memory requirements for typical stateful Java sessions to between 80 and 150 KB, allowing Oracle8i to support tens of thousands of concurrent users.

Native Compilation

Contrary to early impressions, Java is not inherently slow to execute, but is amenable to a wide range of compilation strategies. Oracle8i's JVM includes a native compiler tuned to the needs of server applications. It translates Java binaries to a portable subset of ANSI C source, which is in turn dynamically compiled to platform-specific binary code by a target C compiler. The resulting executable is dynamically linked directly into the server as a dynamic-link library. Oracle adopted this approach for two reasons: first, server code tends to be longer lived and more throughput-critical than client code, allowing them to invest more resources upfront to produce more efficient code than JIT compilers, which must amortize the cost of compilation over a much shorter duty cycle; and second, it allows them to offer high performance uniformly on over 60 different hardware and operating system platforms.

The net benefit of native compilation? In early tests the native compiler has demonstrated improved Java execution performance from 15 to 40 times faster than interpreted code.

Generalized Protocol Framework

To allow a variety of standard Internet clients such as browsers, Internet mail clients, embedded ORBs and middle-tier application servers to access Java program scalably in the server, Oracle has generalized the database's listener and dispatcher to provide general-purpose protocol handling for arbitrary, user-defined protocols. Oracle8i uses this infrastructure to provide native support for HTTP, IIOP, Internet Mail protocols (IMAP4, SMTP, POP3) and other protocols including FTP.

Programming Oracle8i's JVM

Oracle8i's VM is a general-purpose JVM; any Java application can be run on it. It supports three different programming models: Java stored procedures, Enterprise Java-Beans and CORBA Services.

Java Stored Procedures

Java programs can be stored and executed in the Oracle database as Java stored procedures, which allow users to program the database by adding business rules in Java to extend SQL. As an industry standard, Java stored procedures are portable across databases from many different vendors. Such procedures use JDBC or SQLJ to access data. Because they execute in the database server, SQL access is much faster than when the data needs to be retrieved from the server to a JVM on another machine. Java stored programs run in a variety of contexts:

· User-defined functions and stored procedures are called within SQL queries, allowing the stored procedure programmer to directly extend SQL with Java.

· Triggers are stored procedures that are tied to a particular table or view and execute when that table or view is changed. All five types of Oracle triggers can be implemented in Java.

· Object-relational methods allow users to add behavior to SQL object types in Java. Java stored programs can be invoked from any database client including Java clients such as JDBC and SQLJ, 4GL tools such as Developer/2000 and PowerBuilder, and C/C++ clients via ODBC or the Oracle call interface.

Enterprise JavaBeans (EJBs)

EJBs give Java application programmers a convenient and highly productive component model for server-side business logic, facilitating code reuse and multitier application development. Oracle8i provides a highly scalable and high-performance execution environment for EJBs that complies with the EJB 1.0 specification. It supplies a number of EJB services including a Java Transaction Service (JTS) API via the embedded JDBC driver, which has been extended to support JTS-visible transactions. It exposes a Java Naming and Directory Interface (JNDI) to any industry standard Lightweight Directory Access Protocol (LDAP)-enabled directory service. EJB components in the server can be placed in any standard directory and accessed via JNDI. Additionally, it provides a stringent security framework using Internet-standard security mechanisms such as SSL over IIOP for encryption, coupled with traditional database authentication and multiple layers of access control.

CORBA Servers

Distributed systems developers can use the infrastructure used for EJBs to deploy CORBA servers implemented in Java. The JVM provides a CORBA Object Transaction Service (OTS) and also exposes a standard COSNaming interface. Oracle8i provides an object adapter that serves as a registry of CORBA objects published in the RDBMS, and helps locate and load CORBA objects upon initial activation by CORBA clients. It also provides a number of features that make it easy for Java programmers to develop CORBA services, including Caffeine, a direct Java-to-IIOP mapping that eliminates the need for IDL definition, support for objects by value and extensible structs, and a number of tools that simplify application development.

Summary

Oracle8i represents support for a new breed of Oracle product: a server platform that supports Java programs in a highly integrated, robust, easy-to-use package that is integrated with Oracle’s RDBMS server. All of its components – the protocol framework, the JVM and the data-management facilities – are configured to run out of the box and be managed with a single tool. Oracle8i promises substantial support for Internet applications that can be developed and deployed as state of the art Java multi-tiered applications.

About the Author

Don Tornquist (tornquisd@tusc.com) is a Senior Consultant with TUSC (The Ultimate Software Consultants – www.tusc.com) a full-service consulting company that specializes in Oracle with offices in Chicago, Denver, and Detroit. For training, product development, and sales information, contact TUSC at 1-800-755-8872.

Paper #??? / Page 4
Paper #??? / Page 1

