Parallel Query –Using Oracle’s High Octane Option

Jake Van der Vort

TUSC

With the release of Oracle8, Oracle Corporation has extended the power and availability of parallelized operations to many aspects of the RDBMS engine taking full advantage of the multi-processor, SMP and massively parallel servers found in the corporate computing departments of many organizations today. The proven scalability of the Oracle RDBMS engine, as more processors are added to the system, makes this an attractive feature to address the expanding requirements of enterprise-wide data management.

The Parallel Query Option (PQO), introduced in most early releases of Oracle7, has been expanded to provide parallelization of UPDATE, INSERT and DELETE operations. This paper is intended to address the extension of the Parallel Query Option features introduced in the Oracle8 RDBMS release and is directed to those individuals who have at least a fundamental understanding of the Parallel architecture as implemented within Oracle7.

Utilizing parallel operations enables multiple processes to work together simultaneously to resolve a single SQL statement. This feature improves data-intensive operations, is dynamic (the execution path is determined at runtime), and wisely implemented, makes use of all of your processors and disk drives. There’s a small price to pay in all of this, but if your system is overwhelmed with adhoc queries or long running reports driven by SQL statements that scan table blocks or data/index partitions, this option may be the solution to your problems.

Review of Oracle7 Parallel Query Features

Parallel Query in Oracle7 will only work on queries that contain at least one FULL TABLE scan. If you are utilizing Symmetric Multi-Processor (SMP) architecture, Loosely Coupled Systems or Massively Parallel Systems, Parallel Query will take advantage of this processing power. If you are running Oracle7 Server on a single-processor system, and your optimization is limited by I/O bound queries, you may achieve better performance by striping data across disk devices in multiple data files and utilizing Parallel Query. Recognize that Parallel Query or Oracle8 parallelized operations may degrade performance on a single processor system that does not suffer from I/O bottlenecks.

Oracle7 SQL Statements that can be executed in parallel include:

· SELECT statements

· Subqueries of UPDATE, INSERT and DELETE statements

· CREATE TABLE (as SELECT...FROM) statements

· CREATE INDEX statements

These statements may include one or more of the following operations that can be parallelized, all of which must include a full table scan:

· Sort Operations: GROUP BY, ORDER BY, SELECT DISTINCT

· Sort Merge Operations

· Nested Loop JOIN operations to (full) scanned tables

· Aggregate Functions: AVG, MIN, MAX

Oracle8 Parallel Features

Oracle8 introduced the Parallel DML feature, allowing for parallel execution of INSERT, UPDATE and DELETE operations. The following is a list of statements that are capable of parallel execution with Oracle8:

· SELECT

· UPDATE, INSERT,

· DELETE

· CREATE TABLE as...

· CREATE INDEX

· REBUILD INDEX

· MOVE/SPLIT PARTITION

· ENABLE CONSTRAINT
The following operations are also supported in parallel by the Oracle8 RDBMS:
· SELECT DISTINCT

· GROUP BY

· ORDER BY

· NOT IN

· UNION and UNION ALL
· Nested Loop Joins
· Sort/Merge Joins
Additionally, Oracle8 utilizes cost-based optimization to determine to parallelize a statement and the degree of parallelism applied.

Parallel Execution Methods

Statements can be parallelized utilizing three distinct methods, which are determined dynamically when an execution plan is created for the SQL statement.

Block Range (ROWID Range) - Utilized for SCAN operations on partitioned/non-partitioned tables. This approach is the only method through which statements can be parallelized in Oracle7.

Partition - Servers are assigned per partition for partitioned tables and indexes. Partitions are a feature introduced with Oracle8.

Parallel Server Process - Servers assigned for INSERT operations on non-partitioned tables only within Oracle8.

The parallelization method applied to each type of SQL statement/operation is illustrated below:
[image: image1.wmf]select *

from customers

order by name;

Table Data

Table Data

Non-

Non-

Partitioned

Partitioned

Partitioned

Partitioned

dynamic

partitioning

single

server

assigned to

each

partition

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Parallel

Coordinator

User

Process

[image: image2.wmf]select *

from customers

order by name;

Table Data

Table Data

Non-

Non-

Partitioned

Partitioned

Partitioned

Partitioned

dynamic

partitioning

single

server

assigned to

each

partition

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Parallel

Coordinator

User

Process

The Oracle8 partitioning feature has significant impact on parallel operations. Partitions are static, logical divisions of table data and indexes and partitions of the same table/index can reside in multiple tablespaces. Given this architecture, the following important distinctions exist with Oracle8 parallel operations on partitions:

· There is no parallelism within a partition.
· Operations are performed in parallel on partitioned objects only when more than one partition is accessed.
Therefore, if a table is partitioned into 12 logical divisions by a dimension of the data, and a query posted against the table will only access 6 of those partitions (because the dimension of the data dictates the partition in which the data is stored), a maximum of 6 parallel server processes will be allocated to satisfy the query. This condition is known as partition pruning when an execution plan eliminates partitions of data based on the where clause of the query.

The processing model offered in Figure 1. Below illustrates the advantages of utilizing parallel processing. Multiple processes are “dispatched” to address each operation contained within a SQL statement. If data is “striped” or distributed across multiple disk drives, this processing model maximizes your investment in processing power and disk drives. Multiple server processes share the processing load and each are responsible for all or a portion of the statement operation(s). Table scans and temporary segment sorts can be processed concurrently and a single, dedicated server process coordinates efforts of all server processes.

The coordinating process or Statement Coordinator dispatches the execution of discrete operations of a statement to Parallel Servers. As Parallel Servers return result sets to the Statement Coordinator, this process dispatches the next logical operation of the statement to the next available Parallel Server and so forth, until a complete result set can be assembled and returned to the User Process by the Statement Coordinator.

The “Scan” Servers illustrated are dedicated to scanning separate data blocks; as each begins to return rows, additional “Sort” Servers are allocated (or created) to handle the sort operation necessary to satisfy the ORDER BY clause of this statement example. (Note the “Sort” and “Scan” titles used above are for clarity only – all of the above servers are available to any parallel operation of the statement execution).

As indicated previously, parallel operations are dynamic and are determined at runtime. It is important to note that the Statement Coordinator is the server process that issues the EXECUTE call of a user SQL statement. Parallel Servers may exist at the time a user executes a parallelized statement or may be created dynamically to meet the demands of the Degree of Parallelism dictated by the execution path.

Producer-Consumer Relationship

Because the distribution of data, CPU allocated to each parallel server process and the speed of devices servicing the parallel server data request, each server process may complete at different times. As each server process completes, it passes its result set to the next lower operation in the statement hierarchy. Thus any single parallel server process may handle or service statement operation requests from any other parallel server process at the next higher level in the statement hierarchy.

Inter and Intra-Operation Parallelization

The Optimizer will evaluate a statement and determine how many and which parallel server processes will address a single SQL statement. This intra-operation parallelization is different from inter-operation parallelization, which is the process by which the Statement Coordinator distributes work between the server processes and consolidates the multiple result sets into a single result.

The Degree of Parallelism is applied to each operation of a SQL statement that can be parallelized. This includes the sort operation of data required by an ORDER BY clause. Parallelizing SQL statements can be accomplished via a SQL statement HINT or by the object definition itself. The use of a table alias MUST be incorporated into a parallel HINT.

The use of the NOPARALLEL HINT will disable parallel operations in a statement that would otherwise utilize parallel processing due to a parallel object definition. Queries against a table may be made candidates for parallel execution by creating or altering the table definition to include the PARALLEL. Conversely, a table can be removed from consideration for parallel operations by utilizing the alter table command NOPARALLEL

The Coordinator process will evaluate, in order, the following when determining the degree of parallelism for a statement, and whether or not parallel operations will be implemented in the execution path:

1. Hints contained in the SQL statement

2. Table Definition

3. Default Degree of Parallelism dictated by INIT.ORA parameters and table/index statistics (Oracle7).

It is highly recommended that an explicit degree of parallelism is specified in either the SQL statement itself (preferred method) or in the table definition. Although improvements have been made in later releases of Oracle7 (7.3.4) and Oracle8 Server to provide more direct control over the number of default parallel servers created when a degree of parallelism is not available, one should not rely on the default degree of parallelism to govern query server utilization.

SQL Statement Query Rules

SELECT Statements:

Parallelization determined by:

· Parallel Hint or Parallel Object Definition

· Table Scan or Index Range Scan

Degree of Parallelization determined by:

· Hints always take precedence

· Table or Index with highest degree of parallelism

SQL Statement DML Rules (Oracle8)

INSERT Statements:

INSERT…SELECT Decision to parallelize statement is performed independently, however a single degree of parallelism applies to the entire statement.

Parallelization determined by:

· Insert Parallel Hint or Parallel Object Definition

Degree of Parallelization determined by:

· Hint of INSERT Statement takes precedence

· Inserted to Table Definition

· Maximum SELECTED Table Degree of Parallelism

UPDATE and DELETE Statements:

Parallelization determined by:

· UPDATE/DELETE Parallel Hint or Parallel Object Definition

Degree of Parallelization determined by:

· Hint of UPDATE/DELETE Statement

· UPDATED/DELETED Table Definition

· ONLY Applies to Partitioned Tables and Hints (degree) apply to supporting SCAN operations

· Maximum Degree equals Number of Partitions
SQL Statement DDL Rules (Oracle8)

General Rule Governing DDL:

· Parallelization determined by CREATE statement PARALLEL <degree> clause

CREATE TABLE as SELECT…FROM

CREATE portion of the statement:

· Parallelization determined by PARALLEL clause

· Scan operation parallelized automatically, unless:

· SELECT /*+ NOPARALLEL */

· Index Scan of Non-Partitioned Table

· Parallel Degree determined by PARALLEL clause, default (if none specified is number of system CPUs)
CREATE TABLE as SELECT…FROM

SELECT portion of the statement:

· Parallelization determined by:

· PARALLEL Hint (no degree -ignored if specified) or

· PARALLEL clause of the CREATE portion of the statement

And…

· Full Table Scan or Index Range Scan of Multiple Partitions

· Degree of Parallelism determined by:

· PARALLEL clause of CREATE statement

· Number of System CPUs

CREATE INDEX and ALTER INDEX

Parallelism determined by PARALLEL clause

· ALTER INDEX…REBUILD - Non-Partitioned Index Only
· ALTER INDEX…REBUILD PARTITION - Parallelized

Index Scan operation utilizes parallelism definition of the REBUILD or CREATE operations.

· ALTER INDEX…MOVE PARTITION - Parallelized

· ALTER INDEX…SPLIT PARTITION - Parallelized

Index Scan operation utilizes parallelism definition of the MOVE or SPLIT operations.
An important aspect of table and index creation through parallel operations is the physical location of datafiles within the system architecture. If any (full) scanned table’s data is all contained on a single disk, you may succeed only in creating a huge I/O bottleneck on the disk. An underlying principle of the performance gains that can be achieved utilizing parallel operations is that the data is stored on different devices, all capable of being addressed independently of one another. When considering index creation in parallel, consider the following:

· Index creation will use temporary tablespace. Construct temporary tablespace in such a way that the physical datafiles are striped across as many disks (or greater than) as the degree of parallelism of the CREATE INDEX statement.

· In lieu of a PARALLEL clause in a CREATE INDEX statement, the table’s degree of parallelism (if existing) will be used

· Enabling a table constraint (PRIMARY, UNIQUE KEY) will not be performed in parallel unless the index is created first and the USING INDEX of the ALTER TABLE command is used..

Careful planning and management of table and temporary tablespace construction can provide the underlying physical data distribution that is necessary to extract the most performance from parallel DDL operations.

Oracle8 Parallel DML

The Oracle8 RDBMS introduced the capability to perform DML operations in parallel. Parallel DML “Mode” must be enabled within a SQL session in order to perform a parallelized statement operation. The following conditions apply:

Enabling Parallel DML

· Session must be “enabled” via the command “ALTER SESSION ENABLE PARALLEL DML;”

· Parallel DML will NOT be performed if you have pending transactions before altering your session.

· Statement failure does not disable Parallel DML within your session.

· Statement immediately following a Parallel DML statement must be COMMIT or ROLLBACK.
· The first DML statement in a transaction must be executed in parallel.

· Statements that will prevent Parallel DML:

· Any Serial UPDATE/INSERT/DELETE performed

· SELECT for UPDATE

· LOCK TABLE

· Explain Plan

· Parallel DML mode does not affect Parallel DDL or Parallel Queries.

Parallel DML Rules, Exceptions and Usage Notes

1. PL/SQL statements that do not update/query the database are permitted after a Parallel DML statement.

2. If Parallel DML statements are (accidentally) performed in serial, supporting scan operations may still be performed in Parallel.

3. If INIT.ORA parameter ROW_LOCKING=INTENT is set, inserts, updates and deletes are not parallelized.

4. Triggers are not supported for parallel DML.
5. Deletes on tables having a foreign key with delete cascade will not be parallelized.

6. Any insert/update/delete statement referencing a remote object will not be parallelized.

7. Recovery from a system failure during parallel DML operations will be performed serially.
Monitoring Parallel Execution

The V$ fixed views are always a great place for instance monitoring and evaluating the current performance of the database and this is no exception with parallel operations. The key performance views for monitoring parallel execution are:

· v$pq_sysstat

· v$pq_sesstat

· v$pq_tqstat
v$pq_sysstat
This view will provide parallel statistics for all parallelized statement operations within the instance. Ideal for evaluating the number of servers executing currently, and high water mark levels and the frequency of startup and shutdown of parallel servers. The Servers Highwater column will display the maximum number of servers that have been in use.

v$pq_sesstat
Current session statistics are provided by querying the v$pq_sesstat fixed view. This view should be utilized to see the number of queries executed within the current session as well as the number of DML operations parallelized.

v$pq_tqstat
Detailed statistics on all parallel server processes and the producer-consumer relationships between them are presented in the v$pq_tqstat fixed view. Additional information is presented on the number of rows and bytes addressed by each server process is presented. This view is best utilized by the DBA tuning long-running queries that require very specific tuning and evaluation of data distribution between server processes.

Parallel Statement Tuning with Explain Plan

Parallel statement tuning can be accomplished via the explain plan facility utilizing the following statements. The “other_tag” column illustrates the producer-consumer relationship of the execution plan and the “object_node” column provides information than can be utilized to track the hierarchical, inter-operation processing and dependencies between the result sets passed from each server process to the next operation within the execution plan. The explain plan facility cannot illustrate the dynamics that occur when processes complete processing and become available to address additional result sets that are passed down from the operation level above. One approach utilizing an explain plan view is illustrated below:

create or replace view plan_view

as

select id, parent_id,

lpad(' ',2*(level-1))||operation||' '||options||' '||

object_name||' '||object_node||’ ‘||

decode(id,0,'Cost= '||position) "Execution Plan",

other_tag "Parallel Op",

other "PQ Text"

from

plan_table

start with id=0

and

statement_id = ’TEST'

connect by prior id=parent_id

and

statement_id = ’TEST'

/
col "Execution Plan" format a40

col "Parallel Op" format a30

col "PQ Text" format a40 word wrapped

set long 1000

delete
from plan_table

where
statement_id = ’TEST'

/

explain plan

set statement_id = ’TEST' for

select
to_char(wedate,'YYYY') A, count(*) B

from

time_history

group by
to_char(wedate,'YYYY')

order by
to_number(to_char(wedate,'YYYY'))

/

select
*

from

plan_view

order by
id, parent_id

/
The key “other_tag” values to look for are PARALLEL_TO_SERIAL, PARALLEL_TO_PARALLEL, PARALLEL_COMBINED_WITH_PARENT, PARALLEL_COMBINED_WITH_CHILD. If you see SERIAL_TO_SERIAL, you have effected a serial, non-parallelized execution plan. Note that the highest-most operation illustrated within the plan will always be represented as PARALLEL_TO_SERIAL as the last operation performed within the execution plan is to return the result set to the process performing the EXECUTE call of the SQL statement.

Oracle8 INIT.ORA Parallel Tuning Parameters

As a general rule, parameters related to physical memory are generally set much higher than in a non-parallel environment. Also note that these are general parameter settings and your settings must be based on your individual business environment.

INIT.ORA Parameter
Oracle8

Release
Meaning
Suggested

Values

ALWAYS_ANTI_JOIN
ALL
Setting this parameter enables hash anti joins. Meaningful to parallelize “NOT IN” clauses otherwise they will be performed as sequential , correlated subquery.
HASH

ALWAYS_SEMI_JOIN
8.0.4
Meaningful to parallelize “EXISTS” clauses using a view query block and semi-join evaluated in parallel.
HASH

COMPATIBLE
ALL
Setting this parameter to the release level of the instance allows you to take advantage of all of the functionality built into the RDBMS engine. Note that Oracle recommends backing-up the database before setting this parameter!
Set Value to 8.0.<x>

DB_BLOCK_BUFFERS
ALL
Sets size of buffer cache in SGA; This parameter (expressed in blocks) multiplied by block size dictates bytes of memory available for actual data.
If BlkSize = 2K; 5000+

If BlkSize = 4K; 2500+

If BlkSize = 8K; 1200+

DB_BLOCK_SIZE
ALL
Oracle Block Size expressed in bytes. Must be multiple of O/S block size.
4096 - 8192

DB_FILE_MULTIBLOCK_READ_COUNT
ALL
The number of blocks that are read into the SGA in a single I/O. Datawarehouses generally benefit from larger values while heavy TP environments with a lot of users may cause wasted memory with a high setting.
2-16, but O/S dependent

HASH_AREA_SIZE
ALL
Memory allocation expressed in bytes on a per user basis for performing Hash Joins.
Set to the square root of the larger of the two inputs. Then, divide this number by 2 times the number of processes.

OPTIMIZER_PERCENT_PARALLEL
ALL
This determines how likely the optimizer will choose an parallel scan over an index scan. This is disabled if OPTIMIZER_MODE= FIRST_ROWS.
0 = Use Index

1-99 = likelihood of a parallel scan choice

100 = Use parallel

PARALLEL_ADAPTIVE_MULTI_USER
8.0.4
Reduces the degree of parallelism based on number of active parallel users.
TRUE/FALSE

False = default

PARALLEL_BROADCAST_ENABLE
8.0.4
Allows the optimizer to send a small table result set to each of the parallel servers handling pieces of the large table in a hash and merge join scenario.
TRUE/FALSE

False = default

PARALLEL_MAX_SERVERS
ALL
Maximum number of servers allowed to exist simultaneously. SET THIS PARAMETER! Attempts to initiate parallel operations beyond this amount will not run in parallel.
2 * Number CPUs + 1

PARALLEL_MIN_SERVERS
ALL
Minimum number of servers created when instance starts. As servers idle out, terminate, number of servers never falls below this number.
0 - O/S limit. Realistically, start with 10 - 24. Set to Parallel_Max_Servers if PQO is prevalent.

PARALLEL_MIN_PERCENT
ALL
If this percentage of the degree of parallelism (number of servers) required by the query is not available, statement will terminate with an error. This is good when a serial execution of the statement is unwanted.
0 = Always execute

100 = Only if servers can be acquired.

Any value 0-100 valid.

PARALLEL_SERVER_IDLE_TIME
ALL
Number of minutes a server process remains idle before terminated by Oracle. Will not go below the Parallel_Min_Servers.
1- unlimited. Depending on environment, 15-30 minutes is appropriate.

-RECOVERY_PARALLELISM
ALL
Number of Recovery processes that will be devoted to instance or media recovery.
2 - value of PARALLEL_MAX_ SERVERS

SHARED_POOL_SIZE
ALL
Size of Oracle Shared Pool. Portion of shared pool is used for query server communication.
Increase existing parameter value by 5 –10 percent for heavy, concurrent PQ use.

SORT_DIRECT_WRITES
ALL
Bypass the buffer cache when writing sort data to temp tablespace.
AUTO

SORT_AREA_SIZE
ALL
Per user maximum allocation of sort space. Each PQ server utilizes this amount of sort space as well. Set this value = SORT_AREA_RETAINED_SIZE as sort space will most often increase to this maximum. Be careful of physical memory limits!
65K - 1MB – Limited by physical memory

SORT_AREA_RETAINED_SIZE
ALL
Set equal to SORT_AREA_SIZE. Amount of sort space retained on a per user basis. PQ server processes will be allocated and retain sort space.
65K - 1MB. Limited by physical memory.

The existence of the above parameters in the INIT.ORA file will NOT initiate parallel anything on your system. You must either HINT a SQL statement, CREATE or ALTER a table definition! When giving consideration to adjusting any INIT.ORA parameter, fully investigate the Oracle Database Administrator’s Guide or the appropriate Oracle8 Server Installation Guide for your system prior to experimenting.

Parallel Loading Notes

Parallel loading of data can deliver dramatic performance improvements in loading data into a Data Warehouse or implementing Legacy System data feeds. Several techniques are illustrated and covered in the presentation materials, however several points of note should be mentioned here:

· Indexes cannot be defined on the able that you are loading into;

· Initial Extents must be sized to accommodate each parallel session without wasting space:

· Each loader session allocates a new extent

· Space pre-allocated to the table that will be loaded into is not used

· Parallel argument to SQL*Loader requires APPEND directive in the control file.

If you plan on loading data into partitioned tables, architecture is paramount to success. You must first define the partitioning dimension of the data (a date for example), considering the volume of data that will ultimately comprise each partition (recall that Oracle8 does not support intra-partition parallelism); next you must create partition to tablespace mapping, being careful to address the recovery aspects of your partition map. Lastly, you must associate the tablespace to datafile relationship. Albeit a tiresome exercise, the performance of a partitioned database that is queried and/or loaded in parallel is most often a result of the care taken to the physical architecture of the database --- processor speed/quantity alone will not dictate performance -- I/O metrics will.

The Parallel features offered by the Oracle8 RDBMS architecture are applicable to virtually every computing environment today. Look closely at your system and you will identify a query, data load or DDL operation that could leverage the computing resources of your hardware. This ‘high-octane’ option requires a small investment on the part of the Database Administrator, but will boost performance dramatically!

#

� EMBED Word.Picture.8 ���

Block/Rowid Range

Queries using table scans

Move, split partition

Rebuild index partition

Create index (nonpartitioned)

Create table…as SELECT (non-partitioned tables)

Partition

Update and Delete Operations

Insert into…SELECT

Alter index…rebuild

Queries using a range scan on a partitioned index

Create index

Create table…as select

Server Process

Insert Operations on non-partitioned tables.

Paper #??? / Page 2
Paper #115/ Page 1

_980621549.doc

select *

from customers

order by name;

Table Data

Table Data

Non-

Non-

Partitioned

Partitioned

Partitioned

Partitioned

dynamic

partitioning

single

server

assigned to

each

partition

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Scan Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Sort Server

Parallel

Coordinator

User

Process

