Secrets of SQL and Application Tuning

· Monte Malenke, Director, Oracle Solution Center

Raymond James Consulting

1.0 Introduction

· Tuning SQL statements, how they are used and the applications that use them can provide far greater performance benefits than tuning virtually any other part of the database system. This paper reveals how to effectively tune applications and SQL statements. It is presented in the following main parts:

1. How to approach a tuning effort and know ahead of time what types of improvements to expect

2. Essential tools and techniques for tuning SQL and applications

3. Application design techniques for better performance

4. Specific experiences in improving SQL and application performance including some little known techniques for dramatic performance improvements.

2.0 Before You Begin – A Tuning Approach

· Even for single query tuning efforts, it is a good idea to have a broad view of what tuning may involve. Trying to tune a single SQL statement in a poorly designed database may be far more difficult than might be expected. In such a case it would be important to be looking for larger issues such as design that may be the real problem, not how a given query is constructed.

· You may have noticed some people adopting a “just get the thing working and we’ll tune later” approach to application development. This approach rarely produces efficient applications or database access strategies, but rather reveals fundamental flaws in the application design that really need to be completely re-worked. In most of these cases, if the developers had a broad view of application performance, they would have designed their applications and database access strategies from a performance perspective from the very beginning.

At the core of performance tuning database applications is the data access strategy. Rarely does the particular language a program is written in make as much difference in performance as how the data is being accessed. A program written in a purely interpreted language will easily outperform a Pro*C program whose data access strategy is sub-optimal. And in most cases, the data access is where most of the time is spent anyway, diminishing the importance of which language the program is written in.

2.1 Develop a Performance Tuning Strategy

A performance tuning strategy provides you with a prioritized view of those things that make the most difference in how applications perform. Keeping these in mind when tuning helps to reveal where the real problems are and where the most performance improvement can be obtained.

· These items to consider in general order are:

· Database schema

· Overall DB design

· Normalization / denormalization

· Indexes

· Clustering

· Striping

1. Parallel processing features

· SQL statement reusability.

2. Oracle can re-use previously optimized SQL if identical statements are executed. This eliminates parsing and query optimization on subsequent uses.

· SQL Statement Tuning

· How the statement is constructed

· What constructs are used

3. Take advantage of special features of SQL*Plus

1. Application Tuning

· Data access algorithms and internal processing of data

2. Oracle Instance Tuning

4. Init.ora parameters etc.

5. Tune the O/S

2.2 Resource availability vs. demand

Does adequate CPU, memory, I/O and network bandwidth exist for the expected or actual demands? It is important to keep in mind that no matter how well tuned your system may be, if you have inadequate physical resources, you will never achieve desired performance results. You may need to work with your system administrator and Database Administrator to help determine this.

2.3 Determining Reasonable Performance Expectations

I have had many people come to me for help in tuning a query or program without any real idea as to how their program is performing currently, let alone if it is reasonable to expect better performance. In one case, someone came to me with a program they had started 24 hours earlier which was still running and wanted to know if they should let it keep running. They had no idea when it would finish so I helped them figure out what its’ current rows/hour rate was. Then, after factoring in how many rows were left to process determined it would not finish for 10 more days!

3. But before rushing into tune anything, we did some rough evaluation of how many rows the program was processing and what type of processing it was doing, and it was clear it could be made to run much faster. It was only after this determination that we decided to tune the program, which in the end, ran in just a few hours.

To determine reasonable performance expectations, it is necessary to identify two things:

4. How much data is being processed

5. What needs to be done with the data and how.

2.5 Improving Performance WITHOUT Tuning – Taking a Look at the Big Picture.

Occasionally, it is possible to improve overall performance of a program by looking externally to the program or system. At one client site I was at, they had a batch program written with the “just get it running and we’ll tune it later” approach that was running for over 40 hours. This program was not restartable either, so when it crashed, it had to be started all over again. To get this program finished could take many days if it could not finish the first time through.

After finding out it was only processing 35,000 rows, I was curious to see what it was doing. After asking a few questions, I found the 35,000 rows were from an input file received each month to update data in several tables. I then asked how many of the rows in the file were different each month, which the developer did not know. After determining that 90% of the rows in the file did not change from month to month, a new program was written to filter these out of the input file.

After running the program with only the remaining 10% of the rows, the program finished in 2 hours, and we never even touched the program itself! This was adequate performance so the program did not have to be re-written saving several days of work.

3.0 SQL Statement Tuning

3.1 Basic Principles

There are several fundamental principles you should always consider when writing SQL statements. These are discussed in this section.

FROM Clause

· Order tables from largest to smallest (RULE)

WHERE Clause

· Do most restrictive conditions earliest (RULE)

· Try to use NOT EXISTS which will not result in a sort-merge like NOT IN

· Use a join, rather than EXISTS if possible

· Use EXISTS instead of DISTINCT

· Use table aliases and prefix columns with those aliases. This reduces parse time.

· Combine several sub-selects into a single one, if possible.

· Use WHERE instead of HAVING, except on aggregates

· Avoid the cartesian product, by making sure all the tables in your FROM clause are properly joined

Be aware of conditions blocking the use of Indexes

· Compound statements (SELECT …. MINUS SELECT…)

· !=

· IS NULL

· IS NOT NULL

· NOT IN (with a list)

· preferable to use NOT EXISTS, even with sub-queries especially if column selected contains NULLs

· LIKE, with a date or number column

· LIKE, with a comparison string that starts with a wildcard

· Indexed columns that:

· Are modified by a function or expression (SUBSTR)

· Have their type modified (TO_CHAR, etc)

· Are compared using an inequality (<, > etc) to a column in the same table

· Joins between columns of differing data types. Implicit data type conversions can cause this problem.

Best things to do:

· Use equalities

· Use AND conditions. Using OR results in a transformation into equivalent compound queries with UNION ALL.

Indexes vs. Full table scans

As surprising as it sounds, full table scans can be better than indexed accesses if the indexed query would return more than 10-15% of the table. This is due to how efficient the full table scan can be since it reads the table using “multi-block I/O.” This allows Oracle to rapidly scan many blocks of data in each I/O without having to work through an index structure.

Index Suppression

Sometimes the rule-based optimizer will select an index that is not the most efficient one. To disable an index, concatenate a NULL (empty string) or add a 0 to the column having the index you want to disable:

AND name || ‘’ = ‘SMITH’

AND age+0 = 50
Hints

You can influence the optimizer by including hints. A hint must be in the format /*+ hint_name */ exactly. Note that you cannot have a space between the asterisk and the “+”, or Oracle will ignore the hint without telling you and consider it a comment. Some examples are:

Hint
Description

INDEX
Force the use of an index

ORDERED
Forces tables to be joined left to right as listed in the FROM clause

USE_NL
Lists tables to join via nested-loops joins

RULE
Do rule based optimization

COST
Do cost based optimization

ALL_ROWS
Optimize for best throughput

FIRST_ROWS
Optimize for best response times

FULL
Use a full table scan on a specified table

AND_EQUAL
Performs an index merge

BITMAP
Tells Oracle to use the identified bitmap index

CACHE
Overrides default of placing blocks from full table scan at the LRU end of the cache and instead puts them at the most-recently-used end of the cache. This is helpful if you expect more than one full table scan of the same table to occur within a small period of time.

NOCACHE
Prevents Oracle from keeping retrieved rows in the cache. This can be useful for repetitive query runs during tuning exercises to insure that each run of the SQL statement is not able to take advantage of cached data, to simulate a “worst case scenario” during tuning.

INDEX_DESC
Scans a selected index in descending order

NO_PARALLEL
Don’t use parallel access to a table

PARALLEL
Do use the parallel query option when retrieving rows

PUSH_SUBQ
Causes sub-queries to be evaluated at the beginning of a query, rather than at the end. This is useful if a sub-query would provide good data restriction at the beginning of a query.

NO_EXPAND
Prevents the expansion of OR clauses into UNIONS

STAR
Instructs Oracle to consider STAR join methods

3.2 Essential Tools

Explain plan

The EXPLAIN PLAN command will produce output showing how the SQL statement will be executed, including what indexes will be used, the join types etc. To use, you must:

1. Create a “plan” table, which is named PLAN_TABLE by default (see utlxplan.sql in your Oracle installation)

2. Use the EXPLAN PLAN command

EXPLAIN PLAN SET STATEMENT_ID = ‘example’ FOR
SELECT /* nocost */ e.ename, e.job, e.sal, d.dname
FROM dept d, employee e
WHERE e.deptno = d.deptno
AND NOT EXISTS (SELECT * FROM SALARY

 WHERE e.sal BETWEEN loval and highval);

3. Retrieve the results from the PLAN_TABLE using SQL*Plus directly or via other tools

SELECT LPAD(' ', 2*level) || operation ||
 DECODE(id,0,' Cost = ' ||position) "Operation"
 , options "Options"
 , object_name "Object"
FROM plan_table
WHERE statement_id = 'example'
CONNECT BY PRIOR ID = parent_id
START WITH id = 0

Sample EXPLAIN PLAN output:

ID
OPERATION

--

SELECT STATEMENT
1

FILTER
2

NESTED LOOPS
 TABLE ACCESS
FULL

DEPT
4

TABLE ACCESS
BY ROWID
EMPLOYEE
5

INDEX

RANGE SCAN
DEPTNO
6

TABLE ACCESS

FULL

SALARY

Join Types

Nested Loops
This is the most common join performed by Oracle and works well in multi-user environments. A nested-loops join generally indicates that there are indexes available for use. Typically, a full scan on the driving table will occur, then for each row in the driving table, an index look-up will occur on the secondary table to see if a match exists.

Merge-joins
A merge-join combines the results of two full table scans and may have to sort the scanned data before performing the actual merge-join operation. This type of join usually indicates that indexes are not available or cannot be used. This join type is typically not desirable in a multi-user type environment.

Hash-joins
The hash-join is similar to the nested-loops join, but is more complex and only available in Oracle 7.3 and above if specifically enabled in the init.ora file via the HASH_JOIN_ENABLED parameter.

SQL Tracing and TKPROF

SQL tracing collects information that the utility TKPROF can use to produce statistics on the query execution efficiency. This is essential to understand how well a query is performing.

Two ways to turn on tracing are:

Alter session set sql_trace = true;
Set autotrace on;

You may turn on tracing for SQL from virtually any source (SQL*Plus, PL/SQL, 3rd party software etc.)

To run TKPROF:

Tkprof tracefile outputfile … and other options…

TKPROF can also output the EXPLAIN PLAN if that option is specified on the command line.

Example output:

Select balance from accounts where acc_num = 500000 and …….
Call

count
cpu
elapsed
disk
query
current
rows
Parse

1
0.43
0.54
3
0
0

0
Execute

1
0.0
0.0
0
0
0

0
Fetch

54
61.76
79.36
1254
7983
532

54

TKPROF separates the results into 3 SQL processing steps:

Parse

Translation of the SQL into an execution plan

Execute

Executes the statement. For updates, inserts and deletes, this step modifies data.

Fetch

Retrieves the rows to be returned by the query (select statements only)

This produces information on all queries in the trace file that will include the following:

Count

number of times procedure was executed
CPU

number of seconds to process
Elapsed

total number of seconds to execute
Disk

number of physical blocks read
Query

number of logical buffers read for consistent read (cache) (usually selects)
Current

number of logical buffers read in current more (usally insert, update, delete)
Rows

number of rows processed by the fetch or execute

NOTE: The sum of the “query” and “current” is the total number of logical buffers accessed.

In the fictitious example above, there are a lot of disk I/O’s and excessive cache reads to get data for only 54 rows. This would be a candidate for performance improvement.

3.3 Rule vs. Cost based optimization

Rule Based Optimization

Rule based optimization was the only available method until Oracle7. It selects the access path based on the syntax of the SQL statement, primarily on how the WHERE statement is constructed.

Access Paths by Rank

The rule based optimizer ranks each access path to choose how to formulate the best overall access path by choosing the access paths with the lowest rank first. These ranking are as follows:

1. Single row by ROWID

2. Single row by cluster join

3. Single row by hash cluster key with unique or primary key

4. Single row by unique or primrary key

5. Cluster join

6. Hash cluster key

7. Indexed cluster key

8. Composite index

9. Single-column index

10. Bounded range search on indexed columns

11. Unbounded range search on indexed columns

12. Sort-merge join

13. MAX or MIN of indexed column

14. ORDER BY on indexed column

15. Full table scan

Cost Based Optimization

Cost based optimization on the other hand, uses statistics about storage characteristics collected with the ANALYZE command to determine the best access path. The ANALYZE command collects data on the table and optionally on the distribution of data in indexed columns and stores this in histograms. This allows the optimizer to understand if restricting on a certain value of a column will be more or less restrictive than on another value in that column. NOTE: The cost based optimizer does not consider the values of bind variables (variables preceded by a colon) and so cannot use the histogram data in those cases – this is a significant shortfall in my opinion.

You can specify that cost based optimization be used by specifying the hint /*+ cost */, although this is normally unnecessary as cost-based optimization will be used if any one of the tables in a SQL statement have been analyzed. As a result, it is important to analyze all tables involved in a given SQL statement or none at all.

In the cost based approach, the construction of the WHERE clause has no effect on the access path chosen, except when you have an “AND-EQUALS” with 2 non-unique indexes from the same table. In this case, put the most restrictive one first.

Select job, deptno
From employee
Where job = ‘analyst’ (If this is the most restrictive, put it before the other
 And deptno = ‘20’;

Finding the “Resource Hogs” in an Oracle Instance

Here is a query that will show you all the "worst" queries that still have entries in the cache. The weighting factor (disk_reads * 100) is specified since disk reads are inherently more expensive than buffer gets.

SELECT sql_text
,disk_reads
,buffer_gets
--,sid
,hash_value
FROM V$SQLAREA
WHERE disk_reads > 100000
AND buffer_gets > 1000000
ORDER BY (disk_reads * 100) + buffer_gets desc
Note that only the 1st 1000 characters of the SQL statement are contained in column "sql_text". The
entire text can be viewed from V$SQLTEXT or V$SQLTEXT_WITH_NEWLINES.

Note: This SQL statement was taken from a presentation by Tim Gorman of Evergreen Database Technologies Inc., which is on page 131 of the 1998 RMOUG Training days proceedings. His whole paper has several “nuggets” in it. This paper is available on the RMOUG web site at www.rmoug.org.
4.0 Application Tuning Techniques

For many applications, the design approach can be just as important as having well-tuned SQL statements. A general rule of thumb is to minimize individual trips to the database. This is particularly important for high volume applications such as large batch type programs that can run for many minutes or hours. In client-server or three-tier OLTP type applications, it may not be as important as fast hardware and a fast network can generally handle even somewhat poorly designed applications, unless there are large user populations that can saturate the network with inefficient use of the network and database.

Cursors

In some situations such as high volume batch type environments, it is better to avoid using cursors (row-at-a-time processing), and use a single query (set processing approach). For example, use an insert with an attached select to insert rows in a single query, rather than many fetches and individual inserts which have a lot of overhead. My experience is that you generally get a 10:1 performance increase by avoiding cursors and using a set-processing oriented approach.

One technique that has been shown to improve performance significantly in SQR data conversion programs, is to replace the driving cursor with the use of an array loaded with the ROWIDs that would have been selected by the driving cursor. Then, the subsequent updates are performed using the ROWIDs in the array. NOTE: This also eliminated "Snapshot too old " problems since there was no SELECT statement open for a long period of time.
Sequences
When processing large numbers of rows such as batch programs that process many thousands of rows, try to avoid using the Oracle NEXTVAL function in select loops or dynamic insert queries as they are performance problems due to the inherent overhead of maintaining the current value of the sequence. Instead, use ROWNUM or increment a variable programmatically.

I have seen this improve performance dramatically. In one case, a program doing a CREATE TABLE with an attached SELECT loaded about 300,000 rows using a NEXTVAL to keep the key value populated with unique values. It was running in about 20-30 minutes, but when I replaced the use of the sequence with ROWNUM to populate the key value with a sequentially incrementing number, the program was completing in 10-15 SECONDS! After the rows were loaded, then the sequence was set to the the maximum value populated in the key column plus one.

Another technique for on-line environments is to reserve 500 or 1000 sequence values by altering the current value of the sequence. Then your application can use memory variables or ROWNUM plus the starting sequence value up to the last reserved sequence value. In this way, you only have to update the sequence once for every 500 or 1000 sequence values used, rather than for every one.

Stored Procs.

When NOT to use Stored Procedures and Functions
Calling stored functions in queries within external application code is generally an expensive operation. Even using very simple stored functions in an SQL query can slow down query performance significantly. When processing large numbers of rows with stored function calls for each row, this can become a real performance issue. Keep in mind that just calling a stored procedure or function involves overhead, regardless of the complexity of the code being called.

In one instance we had written a simple leap-year stored function called in several places by a large SQL statement executed thousands of times in a batch program. We improved performance by well over an order of magnitude by replacing the function calls with the actual leap-year calculation code. While this introduced additional redundant code to be concerned about from a maintenance perspective, the performance benefits were so significant that it was well worth it.

When TO Use Stored Procedures and Functions
In cases where it would be possible to remove several SQL calls to the database and “bundle” into a stored procedure, effectively moving the database access from the application code to the database itself, you should expect to see performance improvements, especially in a slow network environment. The idea is to replace several calls to the database with one call to a stored procedure.

5.0 Tips, Tricks and Traps

The section contains various performance related tips that have been learned through experience that you might be able to learn from or take advantage of sometime. Some of these resulted in dramatic performance improvements.

Complex Queries

Some complex queries that are poor performers can often be improved by breaking the query into parts and staging the process to achieve the final result. For example, you might create a temp table using the join conditions then insert into the final table while performing other operations on the data etc.

Deleting All Rows from a Table

To remove all rows from a table, use the TRUNCATE command instead of an unqualified DELETE statement to improve performance. Using the DELETE statement incurs the overhead of logging the deleted rows etc., while the TRUNCATE command does not.

Indexes

Make sure you are using them! Add them if you need them. You should also define storage parameters as part of your index create script. This can have a significant impact on index create performance.

As surprising as it may seem, you may only need an index if you are selecting less than 10-15% of the table depending on volumes. This is due in part to the efficiency of Oracle multi-block I/O during table scans.

You can also improve performance by avoiding the use of ORDER BY and placing an index on the columns you were ordering by. This avoids an additional sort operation. You can also use a hint to have the data returned in descending order using the index.

If you only need data from say, one additional column from a table, you may be able to add that column to
an index and avoid going to the base table altogether.

Be aware that having indexes on a table will slow down during insert or update activity as the indexes must be updated with the changes as well. Therefore, tables with many indexes can become quite slow to insert into or update.

NVL, DECODE

Use NVL and DECODE in your query, rather than writing procedural code (if/end if) wherever possible. This has been shown to be as much as 4 times faster than conditional logic in a 3GL such as SQR. NOTE: You can nest DECODES etc. and reference other columns in each record being processed in a DECODE statement making it quite flexible. I have worked with huge nested DECODE statements spanning up to 8 typewritten pages when printed that were excellent performers. The key here, though, is to format the DECODE statements for readability as they can become a mass of unintelligible code if not indented and aligned well.

Also, when ordering the values being evaluated, always put them in order of most common to least common. This will minimize the number of values your variable will be tested against before finding a match. This same principle holds true for other conditional constructs such as CASE structures and IF/THEN/ELSE-IF.

Parallel Operations

Parallel query execution can greatly speed up large or long running SQL statements in the right environments. In general, you must have a multi-processor machine to take advantage of this option. Rather than cover all the details here, you are referred to Oracle documentation on using Parallel Query and other parallel features of Oracle.

Table Partitioning

Dividing a table into separate “sub-tables”, or partitions, can make dramatic performance improvements for very large tables. Only Oracle8 supports “native” table partitioning through use of the PARTITION option of CREATE TABLE. However, in Oracle 7.3 it is possible to simulate this with partitioned union-views of a large table broken out into several smaller tables with constraints placed on the smaller tables to limit the range of legal values for each “sub-table.”

Forcing Index Range Scans

If you are joining to a table that you do not actually need any information from, it is faster to do a
range scan on the index than do a full table scan. You can force Oracle to use the index by qualifying the key such as user_id > 0. This is also helpful when you want the rows back in sorted order.

Snapshot too old

1. For long running cursors, try to place the select in one rollback segment, and the remainder of the transactions in another.

2. You can also try to replace the driving cursor with the use of an array to hold the key values (ROWIDs if possible) for use in subsequent transactions. This keeps a long running select from existing in a rollback segment.

3. Make sure you have large enough rollback segments. Creating large enough rollback segments can be the simplest solution.

4. If your application is using a cursor that iterates through large numbers of records, try breaking up the cursor into several ranges of key values. This will reduce the size required for the rollback segment.

Updates

If you are selecting rows in a cursor loop, then updating those rows in a subsequent update, get the ROWID of each row you select, the use that ROWID in the WHERE clause of the UPDATE to identify the row to be updated. Using the ROWID is the fastest way to access data in a table, faster even than using indexes since the ROWID is the address of the row in the table, which is what indexes point to.

6.0 Conclusion

While it is important to be sure the Oracle instance is tuned appropriately, and the operating system is also configured appropriately, it is far more important that the SQL statements and applications are designed optimally. Performance improvements in tuning the Oracle instance can result in moderate percentage improvements while SQL and application tuning can result in orders of magnitude improvements.

Contact Information

Monte Malenke, Director, Oracle Solution Center
Raymond James Consulting
4582 S. Ulster St. Parkway, Suite 100
Denver CO, 80237

· 303/748-1999
MMalenke@RJConsult.com
www.rjconsult.com
Paper #435 / Page 8
Paper #435 / Page 7

