Seven Deadly SQL Traps and How to Avoid Them

Joe A. Holmes

Statistics Canada

Abstract

SQL is the primary programming language of all Relational Database Management Systems (RDBMSs) including Oracle. Although relatively easy to learn, SQL can be difficult from a performance standpoint. While an inefficient C or COBOL program might run twice as slowly as a well-written program, an inefficient SQL program can be one, two or three MAGNITUDES (i.e. 10, 100, or 1000 times) slower than an efficient, well tuned program. This paper takes a more comprehensive look at some of the traps that can lead to poor SQL performance and ineffective conventional tuning beyond the usual index and optimizer tuning methods. Seven major traps discussed include:

(1) Everything in One SQL Statement

(2) Inappropriate SQL Solutions

(3) Blind Faith in Experts and Vendor Claims

(4) Overly Complex Design and Coding

(5) Management and Client Issues

(6) Theory Over Experimentation

(7) Assumptions Rather Than Facts

Introduction

Conventional Oracle SQL application tuning techniques are extensively covered in Oracle tuning courses, manuals, user papers and textbooks. They include proper index and optimizer usage, correct code arrangement and DBA adjustments. There is also clustering, table partitioning, parallel processing, star joins etc. For diagnostics, Oracle provides tools like SET TIMING ON for elapsed time, SQL_TRACE for performance statistics, EXPLAIN_PLAN to analyze the optimizer execution plan, and numerous V$ tables. Third party diagnostic tools are also available.

Unfortunately, the true cause of poor SQL performance may be the structure of the SQL solution chosen or the way the code has been programmed, rather than simply a conventional tuning problem. Structural problems can act as a tuning barrier limiting any further or significant improvements. Unless one is aware of these possibilities, performance problems may persist leading to any combination of the following results:

(1) The local Oracle DBA may be unfairly blamed (rather than the application)

(2) The Oracle product may be blamed (rather than how it has been used)

(3) Clients may live with it, considering it to be "normal"

(4) Costly and not necessarily effective hardware upgrades may be attempted

This paper discusses seven deadly SQL traps (and some sub-traps) that, in my opinion, can lead to conventional and structural SQL performance problems that can be difficult to diagnose and tune effectively. Awareness of these pitfalls will lead to more effective Oracle SQL performance analysis, design and tuning solutions. The paper is geared to beginner and intermediate Oracle users from a programmer, DBA and management perspective. It discusses SQL in the context of Oracle SQL*PLUS and PL/SQL, but the ideas presented can also be applied to non-Oracle SQL-based systems.

Trap 1: Everything in One SQL Statement

When properly indexed and tuned, SQL is very efficient at applying set retrieval operations all-at-once. However, when too many table joins, correlated sub-queries and calculations are put into the one SQL statement, the combination can contribute to slower performance than might otherwise be possible if the process was broken up into separate SQL statements. This may be true even if the statement is properly tuned using conventional methods. To add to the confusion, books, courses and magazine articles on SQL usually encourage the programming of everything in one statement.

Tuning Difficulties

Everything in one SQL statement can make tuning difficult. The cost-based optimizer is less likely to come up with an optimal execution plan on its own, even with fresh ANALYZE TABLE statistics. This increases the need for manual tuning using HINT commands. The extra complexity can also make EXPLAIN_PLAN very difficult to interpret. Large and complex statements are also more likely to experience hidden slowdowns due to rollback segments, redo logs, and memory and disk usage, and they may be more sensitive to outside traffic. To improve performance, there may be a tendency to use excessive indexing that may lead to space and maintenance problems. Other options may be to cover up the problem with either an expensive hardware upgrade or parallel processing.

Using Multiple Statements to Improve Speed

Breaking up or decomposing large and complex SQL statements into a multiple process with a series of smaller INSERT, UPDATE or DELETE statements using temporary (TEMP) tables (or permanent intermediary tables) in an SQL script can often provide faster overall speed than otherwise possible in one statement [6,7,8]. Since each statement can be simple, (with few joins or sub-queries), there is less work for the optimizer, so they run faster and are easier to tune. The TEMP tables can be indexed as required. Committing at each step [1] can reduce rollback segment usage and using UNRECOVERABLE when creating TEMP tables can reduce redo log usage.

Solving Complex SQL Problems

Using multiple statements makes it easier to solve very complex SQL problems that would otherwise be difficult or impossible in one statement by breaking the problem into a simpler step-by-step approach. Data Warehouse Guru Ralph Kimball published an article in the January 1996 issue of DBMS Magazine entitled "The Problem with Comparisons" [11]. In it, he discussed how "amazingly difficult" and "mind-boggling" it was to use SQL to generate a report that listed company products down the first column with sales from different quarters in subsequent columns. In my opinion, had he used a multiple SQL statement approach with an intermediary TEMP table, his SQL problem would have been easy to solve.

Decomposition Testing

Decomposition testing [12] can be used to tune each portion of a very large statement separately, and then re-assemble it or leave it as a multiple process. It can also be used to gauge how long each component should take for a given load. For example, you can test the expected speed to select one table, then to join two tables and so on. This experience will also help you predict whether a system is running as fast as it should be for a given load.

Caution with Views

Avoid excessive use of views. While they may appear to streamline the SQL code, they also hide the join complexity that defines them [6]. At run time, joins must still be interpreted and executed by the optimizer [1]. As an alternative to views, try pre-joining the tables to create a TEMP table to be used in place of views. We also found that HINT commands had to be placed directly within the view definitions to be activated [9].

Trap 2: Inappropriate SQL Solutions

Inappropriate SQL solutions can create long term problems that are difficult to diagnose and resistant to significant performance improvements. It is important to select appropriate solutions that meet both user requirements and work best with Oracle SQL rather than against it. Some examples are discussed.

Embedded SQL Problems

Using a sequential language like C with embedded SQL (ESQL) can be useful for complex transaction processing where messaging is very important and data volumes are low. With C, ESQL can be done through the Oracle Call Interface (OCI) or using Pro*C. Other languages like COBOL [13], PL/1 and Java can also use ESQL. However, when it is used within a sequential batch or reporting process that is run under high volume data, the combination can be slow and difficult to diagnosis and tune. To illustrate, suppose a C program with two ESQL statements reads and processes "n" records. The first record passes through sequentially until it hits the first ESQL. It calls the database through the network, retrieves a row and returns it. The C process continues to the next ESQL statement and calls the database again. Then the C process for that record completes and the next record is read. The cycle repeats until all "n" records are processed.

For a C program using a lot of ESQL statements, multiply this start-and-stop pattern many times per record and by thousands (or even millions) of records and the time quickly adds up, resulting in overall slow performance. Someone assigned to tuning this application may find that the C code by itself runs fast, and the SQL by itself runs fast, but may not see that perhaps the combination is the problem. And, unlike SQL*PLUS, there is no runtime spool file generated to aid in diagnosis of the problem in production. The overall structure may limit any further and significant performance improvements.

Alternatives to Embedded SQL

An alternative to ESQL is to re-build the process so all SQL processing is done together with the final results spooled to a flat file to be processed sequentially by C code (or some other language). The idea is to provide economies of scale and reduce network traffic by separating the SQL and letting it do what it is best at (fast set retrieval or all-at-once processing), and let the C code do what it is best at (fast sequential processing). Another alternative is to use ESQL sparingly by moving some sequential processes like counts and other operations to PL/SQL stored procedures where they can be done all-at-once. While ESQL is often used because of its messaging capabilities, some messaging can be handled by SQL*PLUS (through updates of a message table at each step) and by PL/SQL exception handling. Also see [4].

Space and Looping Problems

Watch out for unnecessary space restrictions and looping. For example, we inherited some very slow SQL code that used ROWNUM<=3000 to limit the number of rows executed in one pass. The statement was committed and re-executed through a C code looping structure until all eligible rows were processed. It appeared that the looping approach was originally implemented because (for some unknown reason), the rollback segments were never increased. Experiments proved that it was the looping every 3000 rows that caused poor performance, generating a degrading quadratic performance curve. Once the rollback segments were increased sufficiently to enable execution in one shot, performance improved dramatically [9].

Problem of Using PL/SQL First

At one time almost all Oracle SQL processing was written in an SQL*PLUS script, so Oracle programmers became very skillful at using it. Later, PL/SQL was developed to enable if-than-else sequential processing and then stored procedures. Now, new Oracle programmers are likely to use PL/SQL first to solve an SQL problem, bypassing SQL*PLUS. This can sometimes result in a more sequential program that runs slower and with more complex code than otherwise if the problem were programmed using SQL*PLUS. For instance, a new Oracle programmer takes an SQL*PLUS course, then immediately takes PL/SQL. Once training is over, the programmer is assigned to an Oracle development project. Because he or she is probably more familiar with sequential languages like C, the less familiar, but very powerful SQL*PLUS language is avoided in favour of a sequential solution using PL/SQL. Later, the programmer's complex code goes into production and runs very slowly. Had the solution been attempted first in SQL*PLUS, the result might have been a much faster solution and with minimum code.

An example appeared in an article written by SQL Guru Joe Celko in the October 1996 issue of DBMS Magazine [2]. Celko discussed an SQL problem posted by a programmer on an Oracle User Group forum. He used it as a bad example because the programmer created a program with 70 lines of PL/SQL code to do it. Celko printed a better solution using 12 lines of pure SQL. In fact, the same problem could be solved in SQL*PLUS with only four lines!

Try Programming in this Order

I would recommend programming in the following order:

(1) First try to solve the problem using an SQL set retrieval approach in SQL*PLUS. If used correctly, SQL*PLUS can be very fast for large volume batch processing and it enables easy capture of a runtime listing for tuning and diagnostic purposes. It may also be easier to create TEMP tables and use other SQL functions.

(2) Next, try PL/SQL if the solution truly requires if-then-else sequential logic, cursors are needed to reduce network traffic, or looping or exception handling are required. Once working in SQL*PLUS, SQL statements can be incorporated into PL/SQL code for store procedures and database triggers. PL/SQL can also be used within an SQL script.

(3) Lastly, use ESQL where there is relatively low volume transaction processing, messaging is very important, and calculations and comparisons are very complex.

Editing and Reporting Suggestions

When editing large amounts of data, try using SQL to quickly rake through and edit on a column by column basis (with DECODE), rather than sequentially, row-by-row (with if-then-else logic). For complex reports, rather than doing all the joins and calculations within the report tool itself (like Oracle Reports), try doing all the complicated things in an SQL script, and then using the resulting table only in the reporting tool.

Trap 3: Blind Faith in Experts and Vendor Claims

Blind faith in experts and vendors claims can bring additional SQL traps. A French Proverb says "In the land of the blind, the one-eyed man is king".

Local Experts

Many years ago I took a COBOL course from University of Waterloo professor Wes Graham. He told a story about when he was a young programmer working for an automobile company. One day a critical COBOL program stopped working that no one could fix, so they called in Graham. By the end of the same day, he found the problem and had the system up and running. Everyone was amazed and impressed at what Graham had done. What he didn't tell them was that the cause of the problem was something he had coded incorrectly in the first place!

There are varying degrees of Oracle “experts”. You are very lucky if your shop has knowledgeable and experienced Oracle personnel. However, if someone has only a little knowledge in a shop with little or no Oracle experience, it can give much more weight to that person's ideas and opinions (right or wrong) leading possibly to an inappropriate SQL solution. Also, watch out for myths, legends and half-truths about Oracle based on inexperience. If you are a manager with limited Oracle knowledge and experience, get a second or third opinion from others with more experience before committing a lot of resources to a certain design approach.

Networking

To avoid problems of isolation in a shop with little Oracle experience, it is important to encourage networking with other more experienced staff, consultants and vendor representatives. This can be done either within the same organization or by attending a local Oracle User Group. No matter what the Oracle experience level, all users have something useful to share with others and because there are so many new versions, everyone is new at something.

Trusting the Optimizer

Those who worked with V6 and the rule-based optimizer and then converted to V7, remember what happened with the new cost-based optimizer. Oracle claimed it would figure out the best execution plan on its own given fresh ANALYZE TABLE statistics. Unfortunately, this was not always the case, often leading to the continued use of the rule-based optimizer. While the Oracle cost-based optimizer has improved, never completely trust it without thoroughly testing and tuning your SQL statements. As Oracle continues to improve its product and programmers have increased success, trust in the cost-based optimizer will improve.

Researching New Products

Thoroughly test out any new Oracle or other vendor products before committing them to major SQL projects. It is also important to be aware of the limitations of certain products and where to use them appropriately. Talk to other organizations that have evaluated the product or have it running in production. My current organization has a research committee that funds projects to evaluate new software products before they are widely adopted.

Trap 4: Overly Complex Designs and Coding

The KISS principle (Keep It Simple Stupid) is particularly important when working with SQL code. Sloppy looking code or overly complex designs can inhibit effective tuning and may contribute to the performance problem.

Sloppy Code

SQL programming is particularly susceptible to the individual styles and whims of programmers. SQL*PLUS and PL/SQL coding that is sloppy or very verbose can make it difficult to understand and maintain. It can even make the process look more complex than it really is.

Suggested Programming Style

Code should be consistent, well commented and aesthetically pleasing to the eye. For clarity, neatly line up commas and equal signs and consistently indent and space out lines. On our project, we try to make all Oracle reserved words uppercase (like AND, BEGIN, COMMIT, DBMS_SQL, END, FROM, SELECT, STORAGE, UPDATE, WHERE etc). All user-defined words are lowercase such table and column names and aliases. We also use lowercase rem for comments since it does not standout as much as uppercase REM. The following is a suggested SQL*PLUS coding style.

Rather than this:

Set timi on term on

select distinct EMPLOYEE.emp_id,EMPLOYEE.emp_name,

EMPLOYEE.address,DEPARTMENT.dept_no,DEPARTMENT.dept_name

FROM DEPARTMENT,EMPLOYEE where DEPARTMENT.dept_no = EMPLOYEE.dept_no

and EMPLOYEE.emp_id > 1000;

Try this:

SET TIMI on

SET TERM on

SELECT DISTINCT

 e.emp_id

 , e.emp_name

 , e.address

 , d.dept_no

 , d.dept_name

FROM department d

 , employee e

WHERE d.dept_no = e.dept_no

 AND e.emp_id > 1000;

Overly Complex Design

Design with SQL performance in mind. An overly complex database that has been normalized too far can contribute to SQL performance problems by creating more tables and views than are necessary [10]. Avoid excessive use of integrity checking, indexing, triggers, and table fields than are not likely to be used. With SQL processing, only do what you have to do, and only do it once.

Look for Continuous Improvement

Be open to continuous improvement in both the speed and simplicity of your SQL code. Even a less than ideal solution can lead to something much better. Try different approaches and new ways of looking at a problem. For instance, I once created a method of flipping multi-lingual boilerplate text within an Oracle form using a hot-key [5]. It literally turned the database sideways by storing boilerplate text as labels in the columns of one very long table row that provided simultaneous label reads into multiple fields. The technique was simple, fast and required no indexing and it outperformed a more complex, but traditional RDBMS solution developed by some consultants.

Trap 5: Management and Client Issues

Management and clients have a lot of influence on the SQL solutions implemented through standards and policies, resource allocation and user requirements. It is important to have their support to avoid possible traps related to assigning resources, setting deadlines and user requirements.

Assigning Project Leaders

Project leaders on Oracle development projects should have at least some hands on work experience with Oracle. What can happen is that a new project leader may have only a theoretical knowledge, leading to disagreements with experienced programmers based on theory rather than practical experience. One example is that a project leader may discourage denormalization because he or she perceives it as going against traditional RDBMS theory, rather than understanding its practical benefits. Another problem is that the project leader may not be able to block an inappropriate SQL solution proposed by an employee.

Advising Management

It is not easy to appreciate the complexities of Oracle SQL or how long something may take to implement without having worked in the trenches. Therefore, it is important to advise management and clients on the best SQL approach and the time required for a particular Oracle project. Getting them on side is important to enable enough time, resources and training to develop quality solutions. This is especially important where processing will be complex, data volumes are going to be very large, or developers are new to Oracle.

User Driven Solutions

Users may want certain requirements added to a system that may not be a good idea from a performance standpoint. Sell them on solutions better suited to SQL performance. For example, many years ago, I worked on an Oracle V6 Time Reporting System where employees could input their utilized time online. Managers wanted to query and report on budgeted and utilized employee time information, so a complex online query form was built to join all the required tables dynamically for all employees under a particular manager. Unfortunately, it was very slow. As a result, a more effective solution was developed using an SQL*PLUS script that joined and denormalized all possible employee combinations into one table that was run nightly at an off peak time. The next day, managers could easily query their information through a simplified form or launch a report, and with very fast execution speed. Users approved this “canned” approach because, although it did trade off some timeliness, it provided much greater execution speed for multiple-users [7].

Problems with User Defined Code

Be careful with user defined code. If users are allowed to program their own SQL code, it may lead to heavier reliance on the cost-based optimizer and less on manual tuning. If required, limit the complexity of user defined SQL code, set up canned queries with pre-tuned code, or educate users on proper performance tuning techniques.

Trap 6: Theory Over Experimentation

Do not be too restricted by either RDBMS theory, or theories about what you think Oracle does. Erasmus once said, "A little experience often upsets a lot of theory". Always experiment to determine if a solution will work or not, especially when processing under high volume data.

Experimentation

While something may sound like a good idea in theory, it could be a problem in practice. Conversely, something may sound like a bad idea, but could actually be quite practical. Therefore, there is no substitute for experimenting directly with the product. What one thinks Oracle is doing and what it actually does can be two different things. Confirm or disprove any hypothesis about what one may believe the application is doing. In general, I would also recommend setting aside some time each week to try new things with Oracle and to conduct experiments.

Denormalization Anxiety

One area of ongoing controversy in RDBMS theory is denormalization. Theorists tend to discourage it because it can cause integrity problems where some data is updated or deleted in certain tables before others. Despite the theory, in practice it can be very effective by reducing the number of tables that have to be joined. In the May/June 1995 issue of the Oracle Integrator Magazine in an article entitled "Denormalizing Without Pain Using Database Triggers" [10], Gregg Jackson discussed some of the advantages of denormalization and the use of database triggers to eliminate data integrity problems associated with denormaliztion.

Testing with High Volumes

While a design may appear able to handle volumes in theory, the reality in production may be quite different. Always test with higher volume data before moving things into production. If real data are not available, then create simulated data, or use some kind of load testing software product. If a problem does occur, re-write the code to better handle the higher volumes.

Trap 7: Assumptions Rather Than Facts

Making assumptions without gathering hard facts can lead to ineffective tuning, and resources wasted looking in the wrong places. No matter how knowledgeable or confident you may be, don’t assume anything. Socrates once said, “The only thing I am certain of, is that I know nothing”. Gather facts and then base important decisions on evidence and results.

Common Assumptions

The following are some common assumptions [and suggestions]. Some have been previously discussed:

(1) New users may assume that since SQL is non-procedural and relatively easy to learn, one only has to focus on WHAT is desired rather than HOW best to do it. [SQL should also be programmed with HOW best to do it from a performance standpoint].

(2) The cost-based optimizer will come up with an optimal execution plan given fresh ANALYZE TABLE statistics. [Always test and tune the SQL statements, especially under high volumes. Re-check all indexes].

(3) Because a language like C is very fast, using ESQL will also be fast. [The combination of sequential processing intertwined with SQL may be the true problem].

(4) Traffic from competing processes is the cause of the slow performance. [While this may be true to some extent, inefficient SQL is likely to be much more sensitive to outside traffic than efficient code [9]].

(5) There can sometimes be an assumption with inherited solutions that, because something was done a certain way before, it must be OK to continue the same way. [Challenge older approaches with evidence and results].

(6) A hardware upgrade will solve the performance problem. [It may only cover up, but not cure the problem and the improvement may not be significant].

Check Everything Systematically

Always investigate each SQL problem systematically, one step at time rather than trying to do a whole lot of things at once. Start by checking basic data dictionary information on indexes and storage parameters. If you are unsure as to how an SQL query is working, duplicate it in SQL*PLUS and run it with SET TIMING ON and EXPLAIN_PLAN to see what the optimizer is really doing. Also see [9].

Build in Diagnostics

To aid in proper diagnosis, build in execution logs and spool files that capture a runtime listing, and start and end times. One big advantage of SQL*PLUS scripts over PL/SQL stored procedures and ESQL, is that a runtime listing can always be spooled in production with all the SQL code and elapsed time easily visible. It is almost impossible for anyone (like your DBA) to solve a problem unless he or she is provided with some kind of printed evidence like a runtime listing or error message.

Graphing Performance Trends

Try graphing performance patterns to obtain hard evidence on SQL system behaviour. In the July 1998 issue of SELECT, I published an article entitled "Leveraging Oracle Performance Tuning Tools Using Simple Mathematical Techniques" [9] where I discussed a methodology that stressed gathering hard evidence on performance problems. The process involved isolating the SQL code in question, running it on a dedicated machine with high volume data and then graphing performance results on an X-Y co-ordinate axis. The performance patterns could then be interpreted and used as evidence of what the true problems were and clues as to how to fix them. For example, under low volumes, a process may appear linear, but when run under high volumes, it could really be a degrading quadratic process caused by a missing index. Graphing performance can also be useful for understanding the true effects of traffic from competing SQL processes.

Conclusions

The true cause of poor Oracle SQL performance may be the structure of the SQL solution chosen or the way the code has been programmed, rather than simply a conventional tuning problem. There are a number of traps that can lead to SQL solutions that may limit the effectiveness of conventional tuning. Awareness of these pitfalls and how to deal with them will lead to more effective Oracle SQL analysis, design and tuning solutions.

References

[1] Abbey, M., “WAIT is a 4-Letter Word”, SELECT Magazine, 3(3), pp. 32-33, Apr 1996, IOUG-A

[2] Celko, J., “Going to Extremes: How to Use SQL to Get the Most or Least of What You Want”, Puzzle section, DBMS Magazine, 9(11), pp. 20-26, Oct 1996, Miller Freeman

[3] Celko, J., SQL For Smarties, Advanced SQL Programming, section on “Temporary Tables Are Handy”, pp. 397, Morgan Kaufmann Publishers Inc., 1995

[4] Hohwald, J. & Viscusi, J., “Physical Design for High-Availability and Performance”, section on “Use of Host-Arrays with Embedded SQL”, 1998 International Oracle User Week Proceedings, Paper #203, pp. 3, May 10-15, 1998, IOUG-A

[5] Holmes, J.A., “Dynamic boilerplate text and multilingual applications; The Row-wise Normal Form Solution”, Oracle Integrator Magazine, pp. 25-26, Aug 1993, Oracle Corporation.

[6] Holmes, J.A., “The path to better performance”, (on denormalization), Database Programming & Design Magazine, 8(4), pp. 47-49, Apr 1995, Miller Freeman

[7] Holmes, J.A., “More paths to better performance”, (on denormalization), Database Programming & Design Magazine, 9(2): pp. 47-48, Feb 1996, Miller Freeman

[8] Holmes, J.A., “Solve SQL Puzzles Using TEMP Tables”, (letter to the editor), DBMS Magazine, 8(12), pp. 6-8, Nov 1995, Miller Freeman

[9] Holmes, J.A., “Leveraging Oracle Performance Tuning Tools Using Simple Mathematical Techniques”, SELECT Magazine, 5(4), pp. 36-42, Jul 1998, IOUG-A

[10] Jackson, G., “Denormalizing Without Pain Using Database Triggers”, Oracle Integrator Magazine, 6(3), pp.34-35, 65, May/Jun 1995, Oracle Corporation

[11] Kimball, R., “The Problem with Comparisons: A Freshman in Business Needs a PHD in SQL, Part 1”, DBMS Magazine, 9(1), pp.16-18, Jan 1996, Miller Freeman

[12] Rausch, R.J.,“Performance Optimization Through SQL Query Decomposition Testing”, 1991 International Oracle User Week Proceedings (1), Paper #126, Sep 1991, Oracle Corporation

[13] Thomas, J.C., “Tuning Oracle for PeopleSoft Applications”, section on “COBOL/Application vs. SQL/Oracle”, 1998 International Oracle User Week Proceedings, Paper #229, pp. 4, May 10-15, 1998, IOUG-A

About the Author

Joe A. Holmes is a Project Leader for the Systems Development Division of Statistics Canada, Ottawa, Ontario. He has had 20 years of computer systems experience across five Canadian Federal Government Departments including over nine years working with Oracle. Joe can be reached at holmjoe@statcan.ca.

Paper #434 / Page 8
Paper #434 / Page 9

