The Art of Indexing

Venkat S. Devraj

Oracle Solution Center, Raymond James Consulting

Introduction

In most applications, OLTP or DSS, indexes are one of the most ardently used objects. In spite of this, they are highly under-estimated. Creating an index is considered to be a simple and precise science. In my experience, I have noted quite a few sites creating indexes with great vigor and finally ending up with one-too-many and not knowing which ones deserve to stay and which ones can be eliminated without an adverse impact on queries. And of course, there are other sites that tend to seriously under-exploit them, worrying about the possible detrimental impact on inserts and deletes. Furthermore, the rich and varied indexing options offered by Oracle8 adds fuel to the fire. Be it new full-fledged index types or new index-access paths, indexing is emerging as an art, demanding a rock-solid understanding of both concepts and implementation from developers and DBAs.

Objectives

The objective of this paper is two-fold :

· To introduce the various index types and access-paths available in Oracle8 and shed more technical light on them;

· Present specific examples of index-usage at my client-sites to foster better understanding.

Hopefully, this paper will help an attendee in determining specifically what type of index to create during which situation; when an index should be re-built and what kind of access-path should be determined for major DML statements, using those indexes. I have intentionally breezed through and at times, even avoided standard “run-of-the-mill” commentary about indexes and instead focussed on material not easily available in the manuals. The intention of this paper is not to replace the Oracle documentation-set, but to act as a source of reference for real-world implementation of indexes.

Index-types in Oracle8

Oracle8 offers the following major index-types :

· B-Tree indexes

· Bit-mapped indexes

In addition, there are the following variations of the B-Tree index (sub-types) :

· Partitioned indexes

· Reverse-key indexes

· Index-organized tables (IOTs)

· Cluster indexes

Furthermore, you might find the following index-related terms useful :

· Local and global indexes

· Pre-fixed and non-prefixed indexes

· Abstract data-type indexes

Last but not the least, the following index access-paths are provided :

· Regular Index/Table lookups : Uses the ROWID from the index to locate a row in the table.

· Index-only lookups : If all the necessary columns are available in the index itself, the table-lookup is avoided.

· Index range scans : A range of index keys are scanned to locate the desired key-value.

· Fast Full Index scans (FFIs) : FFIs allow reading of multiple index blocks to expedite full index scans. Since an index is usually smaller than a table, an index full-scan is a much faster alternative to a full table scan, if the index includes all required columns. The init.ora parameter db_file_multiblock_read_count determines the number of index blocks read in one I/O operation (remember, many operating systems have a 64K upper limit on I/O).

· Parallel Query Option (PQO) “enriched” paths : In Oracle8, PQO is available for all the above access-paths.

This paper assumes prior knowledge of certain key concepts. Before we start, let’s take a quick peek at those concepts :

· Constraints and index-creation : Declaring primary-key and unique constraints automatically creates an index on the concerned columns. The USING INDEX clause of the CREATE and ALTER TABLE commands allows more control over this index-creation process.

· Rule and Cost based optimization : Rule based optimization is still supported in Oracle8. Oracle8 sites can use either RULE, COST or CHOOSE as a value for the OPTIMIZER_MODE init.ora parameter. This setting is of paramount importance in the way Oracle8 uses indexes. For example, the rule-based optimizer merges indexes if they are non-unique and the predicates used are equality predicates. This is because range-predicates with multiple indexes generally require additional processing that would impede performance. Under the cost-based optimizer (CBO), this would not necessarily happen if the cost of doing the merge were higher than the cost of using multiple non-unique indexes. In addition, certain new index sub-types and access paths are available only while using CBO. For example, partitioned indexes and fast full index scans (FFIs).

With changes in the CBO in almost every new release, never assume that your DML statements are using a certain index. Always run an EXPLAIN PLAN on every important DML statement to ensure usage of the right indexes.

· Analyzing of tables and indexes : CBO requires all tables and indexes to be analyzed periodically, especially after periods of high DML activity. These statistics are used by CBO to evaluate the “cost” of all available access-paths and the path with the lowest cost is selected.

· Usage of hints to force index-selection : Under both rule or cost based optimization, certain hints may be provided to DML statements to specifically select a certain index. This functionality is provided to override the optimizer, in case the access-path selected by it is sub-optimal. Syntax for hints are very similar to comments, except for the addition of a plus (+) symbol. If a hint is provided incorrectly, the optimizer ignores the hint.

Example : SELECT /*+ INDEX(table_a, index_a) */ id, name FROM table_a;

Index-related hints supported by Oracle8 include INDEX, INDEX_DESC, INDEX_COMBINE, INDEX_FFS and PARALLEL_INDEX for retrieving rows from indexes in an ascending order, descending order, combining bit-mapped indexes using boolean logic, prompting the optimizer to use the Fast Full Index (FFI) scan in lieu of a full-table scan and inducing a parallel-scan of an index (using PQO) respectively.

B-Tree Indexes : Everybody’s most favorite index!

This is one of the earliest indexing options available in Oracle. And we are all absolutely familiar with this index-type, right ? OK, let’s have a quick show-of-hands : how many of us here today, understand or remember a B-Tree structure ? Believe me, good usage of these “basic” indexes requires a good understanding of how B-Trees indexes operate. Implementation of B-Trees are a little unique in every application in terms of it’s height and order. However, the basic behavior is the same. Let’s take a quick practical look at how B-Trees indexes have been implemented in Oracle8.

Fig. 1a : A simplistic B-tree implementation (height : 2 and order : 2) [Nodes/leaves read to locate R are displayed in bold]

B-Trees are an excellent way of looking up pointers to large information with minimal number of disk-reads. In a B-Tree, all information is either a node or a leaf. The final information (ROWIDs and keys) are always stored in a leaf. A leaf may contain multiple physical rows. The leaves are always present only at the last “level”. A B-Tree is a “balanced tree”, because every leaf is equi-distant from the root-node. It takes the same time to access any row in any given leaf. Fig. 1a is a poor man’s picture of a B-Tree implementation. However, it clearly indicates the nodes and the leaves. Every tree has a certain order and height. The order is the number of “branches” for every node of the tree. The height is the number of levels the tree contains. Ideally the height has to be minimal, since the number of disk-reads required to get information is proportionate to the height of the tree. For example in fig. 1a, in order to get “R”, two disk-reads are required (“M” at the root-node and “S” at the second-level node). The height is inversely proportionate to the order. The higher the order, the lower the height (termed as a “flat” tree). An important objective in any B-Tree implementation is to increase the branches and reduce the height, thereby ensuring speedy access to the leaves.

A major challenge with a B-Tree implementation occurs during INSERTs, DELETEs and UPDATEs. During every INSERT, the key has to be inserted appropriately within the right leaf. Every key has one and only one place within the tree. If the leaf is already full and cannot accommodate any additional keys, then the leaf has to be split into two. Each of the new leaves would absorb half the keys of the original leaf. This split has to be propagated upwards to the parent node by means of a new entry to point to the new leaves. If the parent node happens to be full, then the node has to be split into two and it’s parent has to be notified of the split. God forbid, if that parent is full, as well! Thus, a split may be propagated all the way up to the root-node, itself. Remember, each split is costly involving physical disk I/O. Part of the challenge in creating B-Tree indexes is to avoid splits or rather, to induce splits during index-creation (and take the performance-hit at that point in time), and not during run-time INSERTs. These splits may not be restricted merely to INSERTs, they may occur during UPDATEs, as well.

Let’s take a look at what goes on within Oracle during an indexed-key UPDATE. Index updates differ vastly from table updates. In a table update, data is changed within the data-block (assuming there is sufficient space in the block for this change to take place). However in an index, when a key is changed, it’s position within the tree has to change. Remember, a key has one and only one position within a B-Tree. So when it changes, the old entry has to be deleted and a new one has to be created at a new leaf. Chances are, the old entry may never be re-used. Because Oracle would reuse a key-entry slot only when the newly inserted key is exactly the same as an old (deleted) one, including data-type, length and case. And what are the chances of that happening ? Most applications at my client-sites use a sequence to generate NUMBER keys (especially primary keys). Unless they are using the RECYCLE option, the sequences do not generate the same number twice. So, the deleted space within the index remains unused. This is the reason why during large-scale DELETEs and UPDATEs, the table-size shrinks or at least remains constant, whereas the indexes grow continuously.

From the above explanation of B-Trees, the following dos and don’ts emerge :

· Avoid indexing columns, that are subject to high UPDATEs.

· Avoid indexing multiple columns in tables, that are subject to high DELETEs. If possible, only index the primary-key and/or column(s) determining the deletes on such tables. If indexing multiple columns is unavoidable, then consider partitioning the tables based on those columns and do a TRUNCATE on each such partition (instead of a DELETE). TRUNCATE simulates a drop and re-create of the table and index by re-setting the high-water mark, when used with the DROP STORAGE clause.

· Avoid creating b-tree indexes for columns with low selectivity (less uniqueness). Low selectivity leads to dense leaf-blocks, causing large-scale index scans. The higher the uniqueness, the better the performance, since range-scans would reduce and maybe even be replaced with an unique scan.

· Null values are never stored in single-column indexes,. In the case of multi-column indexes, the value is stored only if the leading column is not null. Even if the secondary columns are null, the value is placed in the index. Bear this in mind while constructing IS NULL or IS NOT NULL clauses for DML statements. An IS NULL would never induce an index-scan, whereas an unrestrained IS NOT NULL would cause a full index range-scan.

You have heard these advises before, but now the precise logic behind these words of wisdom is apparent.

The importance of PCTFREE

For a B-Tree index, PCTFREE determines the extent of a leaf-split. In other words, PCTFREE indicates the amount of free-space within a block for “future updates”. However in the case of an index (unlike a table), these updates do not make sense, since an update anyway forces a delete and subsequent insert.

In the case of indexes, PCTFREE plays a role mostly at the time of index-creation. A non-zero value specifies the block-splitting ratio. If PCTFREE is set to 20, during index-creation, upto 80% of the leaf may contain key-information. However the remaining 20% should be available for future inserts of key-information into that leaf-block. This ensures that during run-time inserts, there is minimal overhead in terms of incurring leaf-block splits. Even though a higher PCTFREE may cause index-creation time to increase, it prevents the performance-hit from being deferred to actual usage time. So, the end-user, who is waiting for a row to be inserted does not incur the performance penalty associated with a leaf-block split.

Based on this information, the following points emerge :

· PCTFREE for an index is used primarily during creation. It is ignored during actual usage.

· Specify a higher PCTFREE for OLTP applications, if the table is a popular one, incurring a lot of DML changes (via interactive user-screens);

· Specify a lower PCTFREE, if the index-creation time is critical. This will pack in more rows per leaf-block, thereby avoiding the need for further splitting at creation-time. This is of paramount significance to shops, that have “24*7” availability requirements. Index-creation in most cases, requires considerable downtime (especially if the table is a multi-million row table). Lesser the amount of index-creation time, smaller can be the maintenance-window. I have seen this tiny, often unnoticed parameter save around 20% of index-creation time. At a high-availability site, an index on a table containing around 11 million rows took me about 80 minutes to build using PCTFREE of 30 and a parallel degree of 4. The same index on the same table, with 13.5 million rows took me around 90 minutes to create with a PCTFREE of 0 (without any hardware/software enhancements). Nologging (minimal redo) was on during both creations.

· For any column where the values are constantly increasing, it is probably a good idea to set a very low PCTFREE (even, zero). This is because only the rightmost leaf-block will always be inserted into. This will make the tree grow towards the right. The leftmost leaves would remain static. So, there is no sense in leaving any part of those blocks empty with a non-zero PCTFREE.

Partitioned indexes

Partitioned indexes are indexes, which have been horizontally sub-divided based on a specific range of key-values. Partitioning allows logically dependent structures to be physically independent. This allows maintenance operations to be performed on specific partition, while the others are still available for access. Thus, a specific partition may be offline and unavailable, while the other partitions are online and available for access. An index-partition may be re-built or recovered with minimal effect on applications. Each index-partition may have different storage characteristics and may be created in different tablespaces. Partitioned indexes may be created even for non-partitioned tables.

Partitioned index-related terms

Global and Local indexes : When an index is partitioned in a similar fashion as the table, in terms of ranges of partition-keys, then it is referred to as a local index. In other words, the local index shares the key-ranges with the parent table. It would store the keys of only it’s corresponding table-partition. A global index does not have a one-to-one correspondence with any table-partition in terms of partition-key ranges. A global index would store rows from multiple table-partitions. A local index is also referred to as an equi-partitioned index; whereas a global index is also referred to as a non equi-partitioned index.

For example, a table may be partitioned into 52 segments based on the week-of-year. However, the index might be partitioned into 12 segments based on month-of-year. Such an index would be termed a global index. If the index were partitioned into 52 segments, it would be referred to as a local index.

Prefixed and non-prefixed indexes : When an index of a partitioned table contains the partition key as the leading column, it is termed as a prefixed index. A non-prefixed index does not have partition key columns as the leading keys.

Local pre-fixed indexes should be created, whenever possible. Since they have a one-to-one correspondence with the partitioned table, administration is easier. Global pre-fixed indexes theoretically may have a slight performance edge at times, since the overhead of accessing large number of indexes is avoided. However parallel access of multiple local indexes via PQO might provide the same performance benefit. It is generally more expensive to scan a non-prefixed index, compared to a pre-fixed index, since in the case of a pre-fixed index, the optimizer can use the partition key to scan just the necessary index partitions (rather than all) for a predicate referring to the indexed columns.

Oracle8 (as of v8.0.4) does not support global non-prefixed indexes, since they do not have any practical utility. A global index may be split into local indexes or multiple local indexes may be merged into a global one.

A bit-mapped index on a partitioned table has to be a local index.

Considering partitioned indexes

Let me illustrate this “partitioning scenario” with an example. One of my clients is a company providing free e-mail via the web. Their users receive a lot of e-mails. When a user deletes a message, the mail-entry is “deleted” from the main-messages table and moved to a garbage-bin. This is achieved by setting the garbage-flag to ‘1’ for that row in the main table. Only when the user specifically deletes it from his garbage-bin, the mail is permanently deleted. Many users set up their account such that once a week, their garbage-bin is automatically purged. So every week-end, this huge batch-job was run to delete all rows from the main-table where the garbage-flag = ‘1’. Since the garbage-flag column was being used in the WHERE clause of the DELETE, it was part of a regular B-Tree index (a bit-mapped index was not used even though the cardinality was low, because the column was subject to high updates and another key column was being used as the index-prefix). However, every time it was updated to ‘1’, it’s index-entry would be deleted and a new-one would be created. Furthermore, when the record would finally be deleted, the index-entry would continue to take up space. Thus the table would not significantly grow in size (due to e-mails being deleted and inserted all the time). However the index was growing at an incredible rate, taking up large amounts of tablespace area. Finally this problem was solved by replacing the design with a “partition-aware” design.

Consider partitioning indexes :

· for intense OLTP applications, dealing with a large number of rows. The flexibility in administrating relatively small segments is a great boon.

· for high-availability (24*7) environments, where the down-time associated with an index-rebuild cannot be tolerated

· for better overall performance. Whenever possible, Oracle8 parallelizes scans of partitioned indexes. Also partition elimination allows specific partitions to be eliminated from searches based on the key-ranges. This vastly expedites index-scans. Finally, partitioning allows an index to be spread out over multiple physical tablespaces/data-files, thereby reducing the occurrence of I/O hot-spots.

Do not partition indexes on key-values prone to constant updates, especially if such updates cause partition migration, where a row has to be moved from one partition to another.

Reverse-key indexes

A reverse-key index is primarily a b-tree index, where the bytes of key-values are stored in a reversed order. By reversing the keys, index entries are spread more evenly throughout the b-tree. This is very useful in an OPS (Oracle Parallel Server) environment, where contention for the same leaf-blocks might cause inter-instance “pinging” to occur, thereby affecting performance adversely due to excessive disk I/O.

Examples of a reversed key are as follows :

ADAMSON

NOSMADA

1558

8551

Considering reverse-key indexes

In late 1996, at a client-site in Bombay, India, our team was implementing a Custodial Services system. We faced a major performance-impediment with the share-certificates table; especially when the clients would acquire a large number of share-certificates with sequential numbering. We had created the right index on the table and had ensured that the index was indeed, being used. However, even a pure index-access would take unusually long : at least 15 seconds more than what we expected (based on our experiments with other similar tables). Finally we figured out that storing those sequential certificate numbers caused the index to be lop-sided. In other words, some of the leaves would be dense (heavily populated), whereas some of them would be sparse, based on the series of share-certificates we obtained. Most DML activity would focus on these dense leaves, thereby creating “hot-spots” on the index. By hot-spots, I mean index-activity would be much more for these few leaf-blocks, compared to the others. Since there would usually be only one disk-controller accessing those blocks, all activity would have to be serialized, thereby adversely affecting response-time and throughput.

In such a situation, reverse-key indexes would have been a boon. However we were using Oracle7 v7.3 at that time, where the feature was still not available. We lived with the situation for a while. Finally, we circumvented the situation by reversing the values within the application. We had two columns in the table, a column that would store the share-certificate number as it was and a primary-key column, which would store the same share-certificate in a reversed order. We wrote a stored function, which would accept the actual share-certificate as an input parameter and return the reversed number, which would subsequently be inserted in the table as the primary key. This gave us a relatively “well-balanced” index.

The same concept applies to any value that increases in spurts : sequential numbers, date and time columns, etc. Increasing in spurts indicates a scenario where the value monotonously increases, then there is not much activity for a while, thereby creating “gaps” in the values; then the value constantly increases again. Such columns would be prime candidates for using the Oracle8 reverse-key indexes.

One question might come to your mind : how did we manage to figure out that our index was indeed lop-sided ? We used an “ALTER SESSION SET EVENTS” command to understand the index-structure better. This command is mentioned in more detail in Appendix A.

Some caveats to bear in mind while using reverse-key indexes :

· Reverse key indexes are not effective when used in range scans

· Reverse key indexes are prone to all the restrictions of regular b-tree indexes, such as avoiding excessive DML activity, periodic re-building, etc.

Index-organized tables (IOTs)

Index-organized tables are tables, where the rows are stored in a b-tree structure, based on the primary-key value. A primary key definition is mandatory for an IOT. IOTs do not have rowids. An index entry is expected to be terse to remain effective. Since a full-fledged row may be too big to retain index-effectiveness, Oracle8 provides the PCTTHRESHOLD clause to indicate a percentage of the total block-size. All non-primary key columns that cause a row to grow beyond the size of this percentage are moved to an “overflow” tablespace.

Considering index-organized tables

Currently we are building a data-warehouse on Oracle8 v8.0.4 for a major investment company. In the data-warehouse, we have bunch of code-tables, acting as dimension tables. In the first iteration of the physical design, we built all those code-tables as regular tables with two columns : the code-id and the description. We had a primary key index on the code-id. We also cached some of these tables and their indexes in the Oracle SGA.

However with more familiarity with Oracle8, we observed that these code-tables were prime candidates for using the index-organized feature. Since there was only one index on each of these tables, we could use the primary-key to structure the rows in these tables in a B-Tree format. In the second iteration of the physical design, we re-defined most of our code-tables as index-organized tables. It’s a bit too early to judge performance benefits yet. However this has brought us space-savings to the tune of 35%. From around 800 MB for both regular-tables and the primary key indexes, the space-usage has dropped down to approximately 520 MB for the index-organized tables. These space-savings affect not only disk-usage, but also memory usage (since many of the tables were cached). That is true space-savings for us, since memory is always at a premium! Now we can also consider caching more information within the SGA, without really having to expand it (yet!).

Needless to add, this space-saving is obtained due to absence of the row-ids and any indexes on the index-organized tables. This example illustrates that tables such as code-tables or certain master tables, not prone to frequent changes are ideal for using the index-organized feature of Oracle8, provided additional indexes are not needed. This useful option brings substantial space-savings to the table, especially when going from a regular table with an index comprising of most of the columns in the table (built that way to exploit the “index-only lookup” access-path) to an index-organized table.

Some caveats with IOTs :

· The table structure, as of Oracle8 v8.0.4 cannot be altered

· Non-primary key indexes cannot be created

· Absence of rowids might cause problems while migrating Oracle7 applications to Oracle8, if the application DML explicitly depends on rowids

Bit-mapped indexes

The biggest difference between a b-tree index and a bit-mapped index is that the former encourages indexing on columns with high selectivity, whereas the latter encourages low selectivity. This is primarily due to inherent structural differences. A bit-mapped index creates a binary bit-map stream, consisting of 1s and 0s for every distinct key-value. It uses distinct bits (of every byte) to create these binary steams. Due to application of bit-level binary arithmetic, large-numbers of rows can be processed at high speeds. Also, if a table has multiple low-cardinality columns, then bit-map indexes may be created on each of those columns. Multiple indexes in turn will be merged using bit-level boolean logic resulting in very fast index-access times.

Additionally, the bit-mapped is stored in compressed form, thereby causing huge space-savings. On a data-warehouse at a client-site, a b-tree index on a column with 2 distinct values on a table with 12 million rows took up around 184Mb, whereas a bit-mapped index on the same column now takes up a mere 3Mb – a direct saving of more than 98% disk-space!

The new star-transformation access-path in Oracle8 uses bit-mapped indexes to merge results from multiple dimension tables with a large fact table to produce extremely fast query results, without having to perform an expensive Cartesian product as in a regular star query.

An example of a good candidate for a bit-mapped index would be the “marital status” column on the customer table in a data-mart for the Sales department. The marital status column would have a domain consisting of the following 4 values : single, married, divorced, widowed. A bit-mapped index created on this column is represented in table 2a :

Domain Value
Single
Married
Divorced
Widowed
Bit-map pattern

Customer Last Name

Smith
1
0
0
0
1000

White
0
0
1
0
0010

Brown
0
0
0
1
0001

Black
0
1
0
0
0100

Table 2a : column “Bit-map pattern” provides the index-key pattern [remember a bit may either be on (1) or off (0)]

A few things to consider while creating a bit-map index :

· Is the table often queried by this column ? If not, is an index really needed on the column ?

· How many rows are present in the table ? A small table (a few thousand rows) does not warrant a bit-mapped index.

· Does the column have low cardinality ? As an ideal rule-of-thumb, a column would have 7 distinct values or less to qualify. Seven is the lucky number here, because a byte has 8 bits and one bit is reserved for the parity (parity-bit). That leaves seven available bits.

· Is the column prone to frequent DML ? If so, it’s probably a good idea to leave it alone or maybe use it as a secondary column to create a regular b-tree index (the leading column should have high selectivity).

Abstract Data-types & their Indexes

Peek into your abstract data-types with a magnifying glass to identify the scalar data-types, which need indexing. Once the abstract type has been broken down into scalars, all the above mentioned indexing rules apply to them. Whenever possible, ensure that all your DML specifies the absolute path to these scalar types (else the optimizer may not use the right index). By absolute path, I mean “person.name.last_name” and not just “person” even “person.name”.

Considering an index-rebuild

This is the million-dollar question that many DBAs and developers face : when should one think about re-building an application’s indexes ? I have noted that in some organizations, there is a fixed schedule : every 3 months, indexes are re-created on tables, undergoing major DML activity. However some of these frequent index-rebuilds might be unnecessary or even indexes of less frequently used tables might need to be re-built on a more regular basis. How does one determine whether they need to be re-built or not ? How does one get actual numbers indicating that an index is a candidate for re-building ? By using the command ANALYZE INDEX…VALIDATE STRUCTURE. There is another old command called VALIDATE INDEX. This is still available in Oracle8 (mainly for backward compatibility). Either of these commands populate the INDEX_STATS view with meaningful information, that helps in determining whether an index should be re-built or not. Please refer to figure 3a for a description of the structure of INDEX_STATS view.

As is apparent from the structure, DBAs and developers can use the INDEX_STATS view to glean some useful information. The statistics in INDEX_STATS are different from the ones in DBA_INDEXES. The statistics in DBA_INDEXES are created as a result of using the COMPUTE STATISTICS or ESTIMATE STATISTICS options of the ANALYZE command and are used by the cost-based optimizer (CBO). The statistics in INDEX_STATS are created by the VALIDATE STRUCTURE option of the ANALYZE command. Another important difference is that the ANALYZE STRUCTURE…DELETE STATISTICS command erases statistics in DBA_INDEXES; however the statistics in INDEX_STATS are not erased. They get erased only when the index is dropped or get re-computed every time the ANALYZE…VALIDATE STRUCTURE command is run. The INDEX_STATS view only contains information about one index at any given point in time. Don’t worry about old statistics in the INDEX_STATS misleading CBO. CBO does not use the statistics in INDEX_STATS.

SQL> desc sys.index_stats

 Name Null? Type My comments

 ------------------------------- -------- ---- --------------

 HEIGHT NUMBER Height of tree

 BLOCKS NUMBER

 NAME VARCHAR2(30)

 PARTITION_NAME VARCHAR2(30)

 LF_ROWS NUMBER Leaf rows

 LF_BLKS NUMBER Leaf blocks

 LF_ROWS_LEN NUMBER

 LF_BLK_LEN NUMBER

 BR_ROWS NUMBER Branch rows

 BR_BLKS NUMBER Branch blocks

 BR_ROWS_LEN NUMBER

 BR_BLK_LEN NUMBER

 DEL_LF_ROWS NUMBER Deleted leaves

 DEL_LF_ROWS_LEN NUMBER

 DISTINCT_KEYS NUMBER

 MOST_REPEATED_KEY NUMBER

 BTREE_SPACE NUMBER

 USED_SPACE NUMBER

 PCT_USED NUMBER

 ROWS_PER_KEY NUMBER = 1 for UNIQUE keys

 BLKS_GETS_PER_ACCESS NUMBER

Figure 3a : description of the INDEX_STATS view in an Oracle8 v8.0.4 database

COLUMN name FORMAT a25 -- increase if your index-names are > 25 chars

COLUMN “Total leaf rows” FORMAT 999,999,999,999

COLUMN “Deleted leaf rows” FORMAT 999,999,999,999

SELECT name, lf_rows “Total leaf rows”, del_lf_rows “Deleted leaf rows”

 FROM SYS.index_stats

 WHERE name = UPPER(‘&enter_index_name’);

Figure 3b : Query to determine whether index is to be re-built (to be run after ANALYZE INDEX…VALIDATE STRUCTURE as a DBA user)

The query listed in figure 3b provides the total leaf rows and the deleted leaf rows for a given index. If the deleted leaf rows seem relatively high compared to the total leaf rows, then the index should be re-built. I use 20% as a general rule-of-thumb. If the deleted leaf rows are 20% or more of the total leaf rows, I rebuild the index (provided Management waves the green flag!). Also , the command provided in appendix A (ALTER SESSION SET EVENTS…) provides additional information to help in deciding whether an index should be rebuilt.

The REBUILD option

With Oracle7 7.3 and Oracle8, you can use the REBUILD option of the ALTER INDEX command to rebuild indexes. You can even use this option to reverse a regular B-Tree index and vice-versa. However a caveat with REBUILD is, it does not detect and eliminate index corruption, since it bases the rebuild on the existing index (which might be corrupt already).

ANALYZE TABLE …VALIDATE STRUCTURE CASCADE is the best mechanism to detect index-corruption. This command matches each row in the table against all indexes and each row in every index against the table. If there is any corruption found, an error message is returned. Subsequently the index may be dropped and re-built using the regular DROP and CREATE INDEX commands, rather than the REBUILD option of the ALTER INDEX command.

Conclusion

By selecting an approach that considers the tips outlined in this paper, you can not only determine when to rebuild an index, but also how should the new index be re-built – as a reverse-key index or as a partitioned index or even converting a table to an index-organized table.

Even though Oracle8 has vastly increased the number of indexing options available, B-Tree indexes continue to offer the best solution in most cases. As long as they are well-maintained, they provide acceptable performance under diverse conditions. However, certain situations, explained above, prove to be ideal for deviating from the B-Tree approach and instead using another index type such as bit-mapped, or even variations of the B-Tree such as reverse-key, partitioned or index-organized tables. With the versatile index offerings of Oracle8, there has never been a better time to put on that new thinking cap and look at the process of indexing as an art, not a science!

Appendix A

Command to dump an index tree structure

The command “ALTER SESSION SET EVENTS ‘IMMEDIATE TRACE NAME TREEDUMP LEVEL <level_number>’;” dumps the structure of an index b-tree. It gives useful information such as number of levels in the index and number of rows per level. Such information helps the DBA to decide whether an index needs to be re-built and if so, whether it should be reversed.

The <level_number> mentioned in the command above needs to be replaced with an actual number. In Oracle8, this level-number is the “object_id” of the index in SYS.DBA_OBJECTS.

Running the command gives a trace-file in the “user_dump_dest” directory. The trace-file name usually is of the form : “ora_<SID_NAME>_<PID#>.trc” , where SID_NAME is the ORACLE_SID and PID# is the process-id number. Immediately after running this command, you can go to the user_dump_dest directory and run the following command : “ls –lt” to pick up the latest trace file. A sample trace-file is provided in fig. 4a. The last lines of the dump-file contain the meat of the output (between “begin tree dump” and “end tree dump”). The trace file size is directly proportional to the size of the index.

The file-contents can be interpreted by looking at the number of levels : the branches and the leaves per branch. In the sample file provided in fig. 4a, there is only one branch (0x40002b) and 4 leaves (0x4003f0, 0x4003f1, 0x400b0f and 0x400b10), since the dump was produced for a small index with just 1,819 rows. The rows contained in each leaf are 503, 418, 498 and 400 respectively. This indicates that all the leaves are well-balanced (in terms of rows per leaf). So, it is a good idea to leave this index alone. However if the rows in some leaves seem excessively high compared to other leaves, then probably those leaves are hot-spots and could lead to I/O bottlenecks.

Generally, spurts of sequential values or large delete-jobs cause such uneven distribution of keys. If the culprit is merely a huge batch delete job, then probably the situation can be set right by partitioning the table and truncating the partition. If partitioning is a not a feasible solution, then re-building the index (without reversing) after such batch-deletes would help. Alternatively, if the imbalance is caused by spurts of sequential values being inserted in the table, then reversing the key(s) would help.

Dump file /opt/app/oracle/admin/dv01/udump/ora_dv01_3157.trc

Oracle8 Enterprise Edition Release 8.0.4.0.0 – Production

PL/SQL Release 8.0.4.0.0 – Production

ORACLE_HOME = /opt/app/oracle/product/8.0.4

System name: sample

Node name: sample

Release: 4.0

Version: 3.0

Machine: 3446A

Instance name: dv01

Redo thread mounted by this instance: 1

Oracle process number: 9

Unix process pid: 3157, image: oracledv01

Wed Aug 12 10:48:13 1998

*** SESSION ID:(8.69) 1998.08.12.10.48.13.000

----- begin tree dump

branch: 0x40002b 4194347 (0: nrow: 4, level: 1)

 leaf: 0x4003f0 4195312 (-1: nrow: 503 rrow: 503)

 leaf: 0x4003f1 4195313 (0: nrow: 418 rrow: 417)

 leaf: 0x400b0f 4197135 (1: nrow: 498 rrow: 498)

 leaf: 0x400b10 4197136 (2: nrow: 400 rrow: 400)

----- end tree dump

Figure 4a : Sample trace-file (output of the ALTER SESSION…SET EVENTS command described in appendix A)

Warning : Please use all commands and scripts provided in this paper at your own risk. I have used all the commands, provided herein, multiple times on Oracle8 v8.0.x databases without any kind of adverse effect. However neither I nor my company, Raymond James Consulting, warrant that this document is error-free and/or assume any risk associated with it’s usage. Please test all scripts and commands on a development database prior to usage on a production database.

 M

 G

 S

A B C D E F

H I J K L

N O P Q R

T U V

Leaves

Nodes

Paper #??? / Page 14
Paper #464 / Page 1

