Tips for Effective Space Management inside Your Database

Gaylen Royal

Oracle Corporation

Abstract

Fragmentation is an issue of great concern to database administrators. Often times database administrators have heard from “reliable” sources that their database is slow because it is fragmented. To solve their performance problems, a lot of database administrators will reorganize their entire database. Unfortunately many do not consider or do not understand their options.

Oracle has a numerous commands, options, views and statistics that address various aspects of fragmentation, but it is not always obvious how these should be used on a day-to-day basis. There is also a great deal of partial information, obsolete information and misinformation that has been published on this subject.

With new functionality in Oracle 7 release 7.3, fragmentation is actually easy to prevent in many cases. But to prevent fragmentation, you must first understand what it means. The word fragmentation itself refers to several very different phenomena in Oracle. This paper will explore each type of fragmentation individually. We will discuss how you can reduce your server administration cost dramatically by preventing most fragmentation before it occurs. For the times that you actually have to repair fragmentation problems, we will discuss techniques for focusing your repair on the smallest possible subsets of your database to save time and expense.�

This paper is targeted at an audience of database administrators and is based on Oracle7 release 7.3 but also covers some new features introduced in Oracle8.

Introduction

An Oracle database is a collection of operating system files. The files which contain the “stuff” that usually comes to mind when someone says “database” are called datafiles. For example, tables and indexes occupy disk space in datafiles. Oracle allows the grouping of datafiles into logical entities called tablespaces. A database could consist of only one tablespace; however, this strongly not recommended. Instead a database should be divided into multiple tablespaces based on requirements of the different data sets placed in the database making administering the database much simpler. Requirements such as the lifespan of the various objects, the I/O request demands on the data and the backup frequencies should be considered.

The space that a schema object occupies is referred to as a segment. A segment is a collection of database blocks belonging to that tablespace. When creating a schema object, you have the opportunity to indicate within which tablespace that object should be allocated. Furthermore, schema objects themselves can be divided or more precisely, partitioned again based on performance and manageability requirements. The individual partitions, or segments, can be placed in multiple tablespaces.

The number of blocks belonging to a segment can be quite large. To manage access to these blocks more efficiently Oracle further groups them together as extents. An extent is a contiguous allocation of database blocks in a datafile. An extent cannot span the datafiles within a tablespace. An extent is the allocation that is dedicated to any table, cluster, index or rollback segment whenever a segment is created or a segment is required to grow because an insertion cannot be allocated into the existing allocation of space.

In the following sections, we discuss how to effectively use Oracle’s capabilities to monitor and minimize database fragmentation.

Tablespace Freespace Fragmentation

Tablespace Freespace Fragmentation, or also known as Extent Fragmentation, refers to fragmentation that occurs at the tablespace level between used extents; for example:

Tablespace�
 File#�
 Block#�
 Size�
 Type�
 Segment�
�
User_Data�
 10�
 1�
 File Hdr�
�
�
�
�
�
 2�
 5�
 table�
groyal.a�
�
�
�
 7�
 5�
 table�
groyal.a�
�
�
�
 12�
 5�
 index�
groyal.a_pk�
�
�
�
 17�
 5�
 free�
�
�
�
�
 22�
 5�
 table�
groyal.a�
�
�
�
 27�
 5�
 free�
�
�
�
�
 32�
 5�
 free�
�
�
�
�
 37�
 5�
 table�
groyal.a�
�

Notice there are three chunks of freespace, two of which are adjacent. These chunks are remnants of a segment that had three extents that were allocated to 10.17, 10.27 and 10.32, but which has been dropped using some kind of drop command. Tablespace freespace fragmentation is a result of segments being dropped. A common misunderstanding is to believe deleted rows produce tablespace freespace fragmentation. While deleted rows do result in a different type of fragmentation called block fragmentation, deleted rows do not result in tablespace freespace fragmentation.

We will call adjacent free fragments “honeycomb” fragments (10.27 and 10.32) and use the term “bubbles” to refer to fragments that are surrounded by in-use extents (10.17).

Many administrators were led to believe honeycomb fragments impacted performance especially since the Oracle7 SMON process automatically coalesces honeycomb fragmentation in tablespaces whose pctincrease default storage parameter is non-zero. As a result, many administrators set a tablespace’s default storage parameter pctincrease to the value one to force SMON to automatically coalesce the free extents. This is not recommended, as coalescing these extents proactively would add overhead while providing no benefit. As long as the size of all free extents is a multiple of the tablespace extent size, the tablespace is not fragmented. Furthermore, Oracle will automatically coalesce any free extents it needs to in order to satisfy an extent allocation as on-demand coalescing has no correlation to the pctincrease setting for the tablespace.

In addition, bubble fragments do not harm performance; however, isolated “bubbles” of free space can prevent extent allocation from succeeding. For example, a tablespace is fragmented when enough space exists in the tablespace to satisfy an extent allocation request, but the space is spread across several free “bubbles” and therefore cannot be used to satisfy the request. Recall an extent allocation must come from a collection of contiguous blocks.

Fortunately bubble fragmentation is easy to prevent by adhering to the rule that segments in a tablespace should have exactly the same extent size. This ensures that any free extent in a tablespace can always be used for any segment in the tablespace. Thus, there will never be a free extent so small that it cannot be chosen. While managing segment-specific storage parameters may be feasible with a small number of segments, it is clearly not feasible for a complex schema with hundreds or even thousands of segments.

As a result an effective and simple way to ensure uniformly sized extents is to set each tablespace’s default storage clause such that the initial and next values are equal and the pctincrease value is set to zero. Then never explicitly specify a storage clause at the segment level. Instead, let the storage values for the segments be inherited from the default storage clause of the tablespace. If it is required that a segment has a guaranteed amount of space when it is created, specify an appropriate minextents value in the storage clause for the segment creation. This will allocate multiple extents, all of the same size, to the segment at creation time.

To further ensure that extent sizes are equal, Oracle8 added the minimum extent clause to the create tablespace command. Specifying a value for minimum extent ensures that all allocated extents in the tablespace are a multiple of that value. If the extent being allocated would normally be smaller, then it will be automatically rounded up to a multiple of minimum extent. Also, if an extent is being trimmed, for example, as a result of a parallel direct load, then the remaining size and trimmed size will be set to multiples of minimum extent. Always specify a value of minimum extent that is equal to the value of initial to ensure uniform extent sizes.

A well-known analogy� provides a simple set of rules for managing tablespace default storage parameters to effectively control segment extent sizing and avoid freespace fragmentation problems.

Allocating extents to segments in tablespaces is like tiling the bathroom floor. If you use large, irregularly sized tiles, then covering every square centimeter of the floor is going to be very difficult, if not impossible. At the very least, figuring out how to get it done would be an “art” and very few of us are artists. One should not confuse database administration with “art” anyway; it’s a job. Those who tile their bathroom floor with large, irregularly sized tiles generally leave lots of space open, which becomes an unpleasant thing to live with.

What’s the obvious remedy for this? Smaller, uniformly sized, square tiles. With these, you can cover almost every single square centimeter of the floor quite easily. Additionally, you can use differently sized tiles as well, as long as they’re all multiples of a base tile size.

Naturally, the smaller the tiles, the more floor you’ll cover, as you’ll be able to fit tiles into tighter and tighter spots. But of course, there is a point of diminishing returns on this. If you use tile sizes that are too small, you’re getting into building a mosaic, and once again we’re getting into art – much too labor intensive. Life is too short to confuse database administration with art; keep it simple and mathematical and be prepared to approximate once in a while.

To continue with this a bit, consider the effect of dropping a segment in the tablespace. In this case, we’re picking up tiles and removing them. But think of how easy it will be to put same size tiles back in to the open space or a set of smaller tiles into a larger space – absolutely no fragmentation issues. If you try doing this with tiles of any old irregular size, you’re going to run into problems -- tablespace freespace fragmentation.

In a tablespace with a uniform extent size, the only possible tablespace freespace fragmentation would be from any unused space at the end of every datafile. This can occur if the extent size does not match the size of the datafile. Recall Oracle uses the first block of every file to maintain internal bookkeeping information. Therefore, when allocating datafiles to a tablespace, make sure to set the size of the datafile to be a multiple of the extent size for the tablespace plus one database block. For example, if the database administrator wants to create a tablespace with an extent size of 4M and a total useful space of 200M and if the database block size is 4K, the following statement should be used:

create tablespace user_data datafile ‘c:\orant]\database\usr01’ size 204804K;

Note: If you are using raw devices then the raw device size must equal the desired file size plus two blocks. This is because on some platforms Oracle requires an extra block at the beginning of the file.

Furthermore if the autoextend feature is enabled for a datafile, make sure the autoextend maxsize is a multiple of the extent size plus one database block. The autoextend next value for a datafile should be set to either the extent size or a multiple of the extent size for the tablespace.

Block Fragmentation within a Table

In order to understand block fragmentation within a table, one needs to understand the concept of the high-water mark. A segment header block of a table holds a value called the high-water mark. The high-water mark is similar in principal to the stains left on a tree trunk after a flood. The stain shows the height of the water at its peak, not necessarily the current height of the water.

When a table is created its high-water mark is set to the beginning of the table. The high-water mark records the number of the highest block in which records have been stored within the table (the high-water mark is incremented in 5-block increments). The high-water mark decrements only by using the truncate command. The high-water mark does not recede when rows are deleted with the delete command.

The Oracle Server uses the high-water mark value to determine how many blocks to read when using a full-table scan. For example, assuming the database block size is set to 2K, a table whose initial extent allocation is 512K would require 256 blocks (512K/2K).

Next assume 2000 rows are inserted and these rows fit into the first 20 blocks of the table. If we were to trace the full-table scan, we would see the server only reads 20 blocks of data to fulfill the query. The server does not read all 256 allocated blocks because the high-water mark records the fact that no rows have ever existed beyond the 20th block in the table. As a result, the query takes place almost instantly.

However, remember the high-water mark retreats only when the segment is dropped and recreated or truncated. This “forward but not backward” behavior of the high-water mark leaves the opportunity for unnecessary I/O in tables that undergo significant delete activity potentially resulting in a significant performance penalty.

Using the previous example, assume additional rows were inserted requiring ten extents. The number of allocated blocks would now be 2560 blocks ((10*512K)/2K). Assume the high-water mark is set 2500 blocks deep into the 2560 block table. Now a full table scan will require 2500 blocks to be read.

Next assume that all the rows are deleted. Since the high-water mark moves only in the direction of insertions, the mark remains at the 2500 block mark. A full table scan of this zero row table will still require all 2500 empty blocks to be read. This is why users can sometimes see a simple select count(*) that returns 0 take several seconds or even minutes.

Continuing with this example, if we reinsert the original 2000 rows and perform the same query, what originally took place almost instantly with 20 blocks being read now requires several seconds while the server scans an additional 2480 (2500-20) empty blocks.

Resetting the high-water mark is simple in principal: use the truncate command. However, truncate must be used with care as this statement resets the high-water mark by performing a high-speed delete that gets rid of the rows in the table, and which cannot be rolled back. Be careful you don’t delete more than you wish! To repair block fragmentation in a table which is not empty, simply store the contents of the table in a temporary location, truncate the table and then restore the contents. If the table does not contain long or long raw data, then you can use the following statements:

create table temp as select * from table unrecoverable;

truncate table table;

insert into table as select * from temp;

If the table does contain long or long raw data, then you will need to use export and import to unload the data into a file that can be loaded back into the database. No matter what the method, the high-water mark is reset and when the rows are reinserted they will be “tightly packed” into as few blocks as possible.

Often times repairing block fragmentation in a table requires a substantial amount of time. Because of this, administrators need to understand how to determine when a table rebuild will actually give enough benefit to offset the cost. A useful, simple measure of table “badness” that Oracle developed a few years ago is called omega1 and is defined as follows:

omega1 = 1 – (r / h)

where r is the number of blocks in the table that contain at least on row and h is the number of blocks below the table’s high-water mark. The value of r is the value of dba_tables.blocks for the table after an analyze, or it can be found by querying rowid values from the table:

select count(distinct substr(rowid,15,4) || substr(rowid,1,8))

And h is the value of dba_segments.blocks minus the value of (dba_tables.empty_blocks – 1) after an analyze.

Omega1 represents the proportion of a table’s blocks that are completely empty. A table has a value of 0.0 only if every block in the table up to the high-water mark has at least one row in it. A table has a value of 1.0 only if every block in the table up to the high-water mark is completely empty which represents the worst-case scenario. Tables with a non-zero omega1 value are candidates for rebuilding.

However not every table for which omega1 is nonzero needs to be rebuilt. Remember the purpose of the high-water mark is to optimize full-table scans. Nonzero omega1 tables that are never fully scanned may be wasting some space, but they are not necessarily suffering from performance degradation.

For non-zero omega1 tables that are accessed by a full-table scan, you should also consider the number of wasted blocks (h – r). For example, image two tables a and b:

�
 h�
 r�
omega1�
(h – r)�
�
 a�
 100�
 51�
 0.49�
 49�
�
 b�
 3�
 1�
 0.67�
 2�
�

As you can see a full-scan of a wastes 49 blocks of non-productive I/O; whereas, each full-scan on b wastes only 2 blocks of I/O. Just considering this data, it would appear table a is more of a problem than table b. However, in addition to the number of wasted blocks, you also need to consider the frequency at which the full-table scans are being performed. Although a full-table scan of a results in more unproductive I/O, if b is fully scanned several thousand times in some nested loops and a is only fully scanned once a day, it would be more appropriate to rebuild b.

In summary, glancing at the values of omega1 helps you quickly identify potential problem tables. Using this information, the knowledge of your application (which tables are fully scanned and how frequently) and the number of wasted blocks you can better evaluate whether a table rebuild is worth the effort.

Note: Due to the nature of omega1’s calculation, there is the potential for tables that result in a 0.0 value and yet should be considered a candidate for rebuilding. For example, consider the case where a table is comprised of a significant number of blocks and each block has exactly one row in it. Omega1 will not flag this as a problem when in fact a rebuild may be appropriate. A more accurate, yet expensive measure would be to consider the number of bytes of row storage consumed and the number of bytes of capacity short of the high-water mark. Unfortunately determining this information is very expensive since it requires visiting every column of every row.

Block Fragmentation within an Index and Index Depth

Indexes pose a special challenge. There are a couple of reasons why indexes might become inefficient.

When an indexed value is updated in the table, the old value is deleted from the index and the new value is inserted into a separate part of the index. The space released by the old value can never be used again. As indexed values are updated or deleted, the amount of unusable space within the index increases, a condition called index stagnation. Because a stagnated index contains a mixture of data and empty areas, scans of the index will be less efficient. When the utilization of the tree is poor and rebuilding it will reduce a level of the tree, then it may be especially worthwhile to rebuild the index.

Another situation where an index may become a candidate for reorganization is if the index is mostly insert-only and the keys are inserted in ascending order. This would be the case if the index is on a column whose is some form of a sequence number. This behavior will force block splits more often than if the new index values were distributed on throughout the index. For a heavily used index, performance gains may occur from rebuilding the index to reduce its depth.

For these reasons it is important to monitor indexes associated with tables that frequently undergo deletes and updates or indexes that have monotonically increasing or decreasing keys. Monitoring can be done using the analyze index…validate structure command. This command stores detailed statistics about the index into the INDEX_STATS table. Note this table only contains one row, so whatever was there when you perform the command will be replaced with the new information. Therefore, you might want to save the output to a table before validating the next index.

It may be worth rebuilding an index when one of the following is true:

select height from index_stats > 4

select (del_lf_rows_len/lf_rows_len)*100 from index_stats > 20-25%

select (del_lf_rows/lf_rows)*100 from index_stats > 20-25%

To rebuild the index, use the 7.3 feature alter index..rebuild as it is much faster than dropping and recreating the index as the new index uses the old index as its data source instead of using the table and the rebuild can be parallelized. Furthermore when doing the rebuild the old index is available for queries, though DML against the underlying tables is restricted.

Note Oracle 8.i supports complete online reorganization for indexes; that is, the user can continue to update and query the base table while the index is being rebuilt. No table or row locks are held during the creation operation.

Row Fragmentation

We’ve seen how application deletes can cause block fragmentation. Application row updates can also result in another type of fragmentation called row fragmentation. Row fragmentation happens when a row is either migrated or chained. The effect of row fragmentation upon performance is that each time a migrated or chained row is needed for a query, an additional I/O call is required for fulfill the query for the row piece that is not stored in the original block.

If an update statement increases the amount of data in a row so that the row no longer fits in its data blocks, Oracle tries to find another block with enough free space to hold the entire row. If such a block is available, Oracle migrates the data for the entire row to the new data. A forwarding address is left at the original row’s block. This is called migrating a row; the rowid of a migrated row does not change.

If the row is too large to fit into any available block, Oracle stores the data for the row in a chain of multiple data blocks reserved for that segment. This is called chaining a row.

You can identify migrated and chained rows by using the analyze…list chained rows command. This command collects information about each migrated and chained row and placed this information into a specified output table; for example, CHAINED_ROWS. The collected information includes the head rowid of any migrated and chained row. Once this has been identified the following steps can be used to focus your efforts on reducing migrated and chained rows instead of rebuilding the entire table:

Create an intermediate table with the same columns as the existing table to hold the migrated and chained rows:

create table intermediate as select * from existing

where rowid in (select head_rowid from chained_rows where table_name=’existing’);

Delete the migrated and chained rows from the existing table:

delete from existing where rowid in

(select head_rowid from chained_rows where table_name=’existing’);

Insert the rows of the intermediate table into the existing table:

insert into existing select * from intermediate;

Note it may not be possible to avoid chaining in all situations. Chaining is often unavoidable with tables that have a long, long char or varchar2 column.

Implementing the cure for row fragmentation is more expensive than proper prevention. You can minimize unnecessary row fragmentation for a table by correctly setting the table’s pctfree value. Being too pessimistic on pctfree can waste some space but will more or less guarantee no row-chaining while being too optimistic can result in row-chaining and reduced performance. Instead of trying to save every byte in a block we recommend erring on the side of setting pctfree high rather than low as in most cases this probably will be only a difference of about 5%. For tables that don’t have varying width columns and/or don’t get updated, this parameter can be safely ignored or set to a low value.

Furthermore dividing the value of dba_tables.chain_cnt by dba_tables.num_rows for the table after an analyze gives the percentage of rows that are chained or migrated. If this number if high (more than 5%) and the maximum row length is less than the database block size then you may wish to increase the current pctfree setting in order to reduce the potential for rows which would have to be migrated in the future.

Segment Fragmentation

Oracle 7.3 supports an unlimited number of extents in a segment. The performance impact of multiple extents within a segment is a topic that has gained much attention from database administrators. It is presumed that multiple extents result in a performance penalty. The most compelling reasons to believe the database operates more efficiently if all segments reside in one extent is that “empirical data” says so:

People who completely rebuild their databases so that all segments fit into a single extent regularly “see an overall performance gain ranging from five to twenty percent.”

Queries of multi-extent tables perform “measurably slower” than queries on single-extent tables.

In actuality the performance of DML operations is largely independent of the number of extents in the segment. However, certain DDL operations such as dropping and truncating of segments are sensitive to the number of extents. Performance measurements for these operations have shown that keeping the number of extents below 1024 is well within the range that Oracle can efficiently handle.

Let’s address each issue one at a time.

Extent Compression

The best direct evidence people have for believing that segment fragmentation is bad is that they rebuild a table that has grown into multiple extents, compressing into one extent upon reloading of data and see measurable performance gains. Then over time, the table in question grew into multiple extents, performance decreased and after rebuilding the table again, performance once again increased.

People have assumed that the act of compressing the extents resulted in the performance gain. What they tend to fail to realize is that the performance gains associated with the rebuild cycle are not due to a decrease in the number of extents, but instead come from other sources. When a table is dropped and recreated, two main things happened

The high-water mark is reset to its lowest point. The high-water mark is reset to zero upon creation. Then as rows are inserted, each table’s high-water mark is moved upward only as much as necessary. As a result after the rebuild, full-table scans are as efficient as full-table scans can be.

Each block is loaded as full of rows as possible. Because insertions are packed as tightly as possible within the confines of the pctfree and pctused settings, all blocks contain exactly as many rows as they are able to contain. Consequently, after the rebuild every I/O request extracts as much data per database block as is physically possible. Furthermore, unless a row is simply too large to fit into one Oracle database block, reinserting every row reduces row chaining to its absolute minimum.

This is really why performance improvements are seen. In many situations, a site that experiences a temporary performance improvement by routinely rebuilding probably has an opportunity for a more permanent performance gain by looking elsewhere. Index and data block sparseness can in fact be a real problem in some delete-intensive applications and row migrating can be a real problem in update-intensive application. A solution in either of these areas is usually a challenge, although some problems can be administered effectively by careful setting the pctfree and pctused values.

However, applications that benefit most from periodic rebuilds are typically those that use inefficient query optimization paths. Sites that frequently use full-table scans gain performance improvements by doing rebuilds, but SQL statement tuning or the addition of optimizing indexes could result in even more significant improvements. Once the site removes the need for full-table scans as it primary data access path, the periodic rebuild becomes neither necessary nor useful.

Full Scan Access Paths and Multiple Extents

Another popular argument against having multiple extents is that reading a contiguous section of disk space avoids disk head movement (seek time) and delivers better sequential I/O performance. This argument is frequently validated in carefully controlled environments on a single-user computing system in the absence of all other I/O requests. However, in multi-user environments there are a multitude of I/O calls occurring simultaneously. The fact is in an operational multi-user system, the disk drive head is just a likely to be as close to the first block of the new extent as it is to be close to the next block in our current extent. Experiments on heavily loaded operational OLTP computing systems have shown there to be no measurable difference between full-table scans on large tables with one extent and full-tables scans on large table with multiple extents.

For systems that are dedicated to a single large batch process performing full-table scan queries do show some measurable difference in performance. However, the negative effects of having more than one extent per segment can be practically eliminated by:

ensuring that the extent size is a multiple of the multi-block I/O size (db_file_multiblock_read_count * db_block_size) in order to avoid any extra I/O

keeping the number of extents below 1024 extents

avoiding expensive create and drop operations and using truncate instead

Direct Access Paths and Multiple Extents

In applications that depend exclusively on direct access paths by using indexes to avoid the inefficient full-table scan data access method, there is absolutely no impact of multiple extents. Index traversal is executed entirely by the Oracle data block address (DBA), beginning with an index root node access, and traversing a B*-tree by direct I/O of exactly the needed block. It does not matter whether the two index blocks are in the same extent or not as each is read with a separate read class. Direct access data blocks are then fetched by DBA. Two or more data blocks fetched in the same query thus will motivate separate read calls as well. It does not matter whether two such blocks are in the same extent or not, the read times are statistically identical.

Conclusion

In this paper, we provided an overview of the various kinds of fragmentation that can occur in Oracle. Techniques for avoiding, detecting and correcting these problems have been discussed. Though fragmentation is not necessarily always avoidable, we believe by deploying common policies regarding space management fragmentation can be avoided in most situations Once space management is not at crisis level, tuning efforts can be focused and better spent on other areas which could result in even a bigger performance improvement.

� Many of the concepts and examples discussed are from Oracle7 Server Space Management (rev 1.4b) by Cary Millsap of the Oracle’s Systems Performance Group

� This excellent analogy comes almost verbatim from Tim Gorman of Oracle Consulting Services.

Paper #8783 / Page �page �8�

Paper #8783 / Page �page �9�

